A Variable Order Finite Difference Method for Nonlinear Multipoint Boundary Value Problems

By M. Lentini and V. Pereyra

Abstract. An adaptive finite difference method for first order nonlinear systems of ordinary differential equations subject to multipoint nonlinear boundary conditions is presented. The method is based on a discretization studied earlier by H. B. Keller. Variable order is provided through deferred corrections, while a built-in natural asymptotic estimator is used to automatically refine the mesh in order to achieve a required tolerance. Extensive numerical experimentation and a FORTRAN program are included.

1. Introduction. In this paper, we intend to show how a finite difference technique can be developed to produce high order approximations to the solution of multipoint, nonlinear boundary value problems for first order systems of equations.

We shall present extensive numerical evidence and comparisons with results published in the current literature showing that the method is extremely accurate and that it performs very efficiently.

Moderate accuracy can also be obtained economically in terms of time and storage by working on very coarse meshes. All our results have been obtained with a general purpose program, whose structure can be (and has been) employed in other applications (Pereyra [20]).

Following Keller [11] we consider the nonlinear first order system

(1.1a)
$$y'(t) - f(t, y(t)) = 0, \quad a \le t \le b,$$

subject to the multipoint boundary conditions:

(1.1b) $g(y(\tau_1), \dots, y(\tau_N)) = 0, \quad a \le \tau_1 < \tau_2 < \dots < \tau_N \le b.$

The vector functions y(t), f(t, y), and g will take values in \mathbb{R}^n . Considering the nonuniform net $\{t_i\}$:

Copyright © 1974, American Mathematical Society

Received September 17, 1973.

AMS (MOS) subject classifications (1970). Primary 65L10, 65B05, 34-04.

Key words and phrases. Adaptive finite difference method, variable order method, nonlinear multipoint boundary value problem, first order systems boundary problem.

(1.2)
$$t_0 = a, \quad t_j = t_{j-1} + h_{j'}, \quad 1 \le j \le J, \quad t_J = b,$$

$$h \equiv \max h_{j'}, \quad \{\tau_j\} \subset \{t_j\},$$

the simple finite difference scheme

(1.3a)
$$N_h u_j \equiv \frac{1}{h_j} (u_j - u_{j-1}) - \frac{1}{2} [f(t_{j-1}, u_{j-1}) + f(t_j, u_j)] = 0, \quad j = 1, \dots, J,$$

(1.3b)
$$g(u_{j_1}, \cdots, u_{j_N}) = 0,$$

will produce $O(h^2)$ accurate discrete approximations under mild conditions which will be spelled out in Section 2. An asymptotic expansion in even powers of h for the global discretization error $u_j - y(t_j)$ can be shown to exist, and this knowledge justifies the use of deferred corrections which will increment the order of the method in two units per correction, working always on the *same* basic mesh.

The adaptive scheme of Section 4 is designed so that the highest order method, compatible with the current mesh and with increasing returns in accuracy, is always used. The main tool employed to decide which path to follow in the program logical tree is the very natural and effective asymptotic error estimator described in Section 3.

By reduction to first order systems in the usual way, systems of higher order equations can be treated. In this respect, we remark that, in sharp contrast to other high order methods, not only the unknown function but *all* its derivatives up to one unit less than the order of the equation are approximated with the *same* asymptotic order.

From the current literature, we have chosen a set of representative problems used to test variational spline methods, shooting and parallel shooting, and a finite difference technique similar to (1.3), but where high order is achieved via Richardson extrapolation.

Numerical results obtained with our technique are presented in Section 5. In each case, we give pointers to the papers in which the test has been used before, and in a few relevant cases we compare different numerical results. Due to the fact that most numerical tests in this area are published with little detail concerning implementation, computer times, and so on, it is hard to make any final judgement about the relative merits of the different techniques. The ultimate comparison will be that given by the user which will require: ease of use, applicability or adaptability to its particular problem, and overall: economy in computer cost and reliability.

Our program (which is appended) has been developed with these requirements in mind, and we have tried to achieve the quality and high standards of the general purpose software currently available for initial value problems.

In this first stage, we present a version which is not as general as the one described

theoretically. We consider only linear two-point boundary conditions of the form $Ay(a) + By(b) = \alpha$ and uniform meshes.

However, we have used (Section 6) a variation of the program (not presented here) which handles a jump discontinuity. It is fairly clear that a general program can be written with a moderate amount of additional work. We are really waiting to develop an effective automatic procedure for choosing nonuniform meshes before undertaking a more general program.

2. Keller's Results for the Basic Method [8], [9], [11]. The main theoretical support for our method is provided by the thorough analysis that H. B. Keller has made of the second order scheme (1.3), and by the general theory of deferred corrections developed by the second author of this paper [16]. For completeness, we shall now describe the minimum material necessary to present our results.

A solution $y^*(t)$ of (1.1) is said to be *isolated* if the linearized problem (around y^*) has a unique solution. We assume that (1.1) has an isolated solution $y^*(t)$. Then, for sufficiently small h_0 and all $h \le h_0$, we have:

(i) The difference equation (1.3) has a unique solution in a neighborhood of $\{y^*(t_i)\}$, which can be computed by Newton's method. The convergence is quadratic for appropriate initial values.

- (ii) $\max_{i} \|u_{i} y^{*}(t_{i})\| = O(h^{2}).$
- (iii) $u_j y^*(t_j) = \sum_{\nu=1}^m h^{2\nu} e_{\nu}(t_j) + O(h^{2m+2}), j = 0, \cdots, J.$
- (iv) Writing (1.3) in vector form

$$\Phi_h(U) = 0$$
, with $U = (u_0, \cdots, u_J)^T$, and

$$\Phi_{h}(U) = \begin{bmatrix} g(u_{j_{1}}, \cdots, u_{j_{N}}) \\ N_{h}u_{1} \\ \vdots \\ N_{h}u_{J} \end{bmatrix}$$

we have the stability condition

(2.1)
$$||U - V|| \le C ||\Phi_h(U) - \Phi_h(V)||, \quad C \text{ independent of } h|$$

(which can be readily obtained from (3.4a) of [11]).

Most of these results can be extended to the important case in which the data functions f and g are only piecewise smooth, with jump discontinuities allowed at the boundary points $\{\tau_i\}$.

We shall also need the Fréchet derivative (Jacobian matrix) of the operator $\Phi_h(U)$. This matrix has the following block structure:

where all the submatrices are of size $n \times n$, and

$$G_{j} = (\partial/\partial u_{j})g, \quad j = 0, \dots, J,$$

$$S_{j} = -\left[\frac{1}{h_{j}}I + \frac{1}{2}f'_{j-1}\right], \quad R_{j} = \frac{1}{h_{j}}I - \frac{1}{2}f'_{j}, \quad j = 1, \dots, J,$$

$$[f'_{j}]_{st} = (\partial f_{s}/\partial u_{t})(t_{j}, u_{j}).$$

3. Deferred Corrections and Asymptotic Error Estimates. By using Taylor series we can easily obtain an asymptotic expansion for the local discretization error $\tau_h(y^*) \equiv \Phi_h(y^*)$. In fact,

(3.1)
$$\tau_{h}(y^{*})(t_{j-1} + \frac{1}{2}h_{j}) = -\sum_{\nu=1}^{L} \frac{\nu}{2^{2\nu-1}(2\nu+1)} \cdot f_{j-1/2}^{(2\nu)} \frac{h_{j}^{2\nu}}{(2\nu)!} + O(h^{2L+2}),$$

where

$$f_{j-1/2}^{(2\nu)} \equiv f^{(2\nu)}(t_{j-1} + \frac{1}{2}h_j, y^*(t_{j-1} + \frac{1}{2}h_j)).$$

Let $F_k(y^*)$ be the segment of the expansion (3.1) containing its first k terms. For each $1 \le j \le J$, let i_j be the only index for which

(3.2)
$$\tau_{i_j} < t_{j-1} + \frac{1}{2}h_j < \tau_{i_j+1}$$

Then we define S_k as

(3.3)
$$S_k(y^*)(t_{j-1} + \frac{1}{2}h_j) \equiv \sum_{i=0}^{2k} w_{j,i} f_{j-p_j+i},$$

where the p_i are chosen so that

(3.4)
$$\tau_{i_j} \leq t_{j-p_j+i} \leq \tau_{i_j+1}$$

is satisfied. The weights $w_{i,i}$ are chosen so that

(3.5)
$$S_k(y^*) = \tau_k(y^*) + O(h^{2k+2})$$

at each $t_{i-1} + \frac{1}{2}h_i, j = 1, \dots, J$.

Clearly, (3.4) imposes a condition on the mesh:

CM: There must be at least (2k - 1) mesh points between boundary points.

Though it is not strictly necessary to require (3.4) in the case we are considering at present, we prefer to assume (3.4) to hold since this will be essential in the case of piecewise smooth data, where we must avoid straddling a singularity in order to obtain the desired accuracy (cf. Section 6).

Once CM is assured, (3.3) can always be constructed since it is simply a numerical differentiation formula applied to each component of the (perhaps piecewise smooth) vector function f. With a small modification, the correction generator of [19] can be used for this purpose (cf. also [16], [17]).

From [16], [18], it follows that, if $Y^{(k-1)}$ is an $O(h^{2k})$ accurate discrete solution, then (3.5) is satisfied if y^* is replaced by $Y^{(k-1)}$ and that, for $k \ge 1$, the solution $\Delta^{(k-1)}$ of the linear problem

(3.6)
$$\Phi'_{h}(Y^{(k-1)})\Delta = S_{k-1}(Y^{(k-2)}) - S_{k}(Y^{k-1})$$

is an asymptotic error estimator for $e_{k-1} \equiv Y_{k-1} - \phi_h y^*$, where $S_0 \equiv 0$, and ϕ_h projects $y^*(x)$ on the mesh functions. In fact, we shall have

(3.7)
$$\Delta_{k-1} = e_{k-1} + O(h^{2k+2}).$$

The successively more accurate mesh solutions $Y^{(k)}$ are obtained by deferred corrections, i.e., by solving for $Y^{(k)}$ the nonlinear problems:

(3.8)
$$\Phi_h(Y) = S_h(Y^{(k-1)}), \quad k = 1, \cdots.$$

These nonlinear problems can be solved by Newton's method, i.e., by the iteration:

(3.9)
$$Y_{l+1} = Y_l - [\Phi'_h(Y_l)]^{-1} \Phi_h(Y_l),$$

starting from an appropriate Y_0 . Naturally, each step is performed by solving a

linear system entirely similar to (3.6). Because of the special structure of the sparse matrix Φ'_h , there are various direct methods which can be employed. In the case of separated two-point boundary conditions, it is advisable to use the band or block tridiagonal methods of Varah [25] and Keller [11].

Clearly, the difficulties in the asymptotic theory observed before in the simple two-point boundary value problem [19], because of the use of different differentiation formulas at different points, are also present in this case at each subinterval. However, as in the simpler problem, we hope to show with our numerical experimentation that, notwithstanding these theoretical difficulties, this is a very effective technique.

Solution of the Linear Systems of Equations. We shall describe briefly the direct solution of block systems of the form (2.2). We have included in (2.2) an extra subdivision in order to treat the 2×2 "super-block" matrix:

(3.10)
$$\Phi' = \left[\begin{array}{c|c} A & B \\ \hline C & D \\ \hline n & n * J \end{array} \right] n * J$$

Considering the partitioned vectors

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_0 \\ \vdots \\ \hat{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \\ \vdots \\ \vdots \\ \mathbf{x}_j \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_0 \\ \vdots \\ \vdots \\ \mathbf{b}_j \end{bmatrix} = \begin{bmatrix} \mathbf{b}_0 \\ \vdots \\ \mathbf{b}_1 \\ \vdots \\ \vdots \\ \mathbf{b}_J \end{bmatrix},$$

the super-block system

(3.11)
$$\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} \begin{bmatrix} \mathbf{x}_0 \\ \hat{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_0 \\ \hat{\mathbf{b}} \end{bmatrix},$$

is solved by elimination. More explicitly:

(3.11a)
$$\mathbf{x}_0 = (A - BD^{-1}C)^{-1}(\mathbf{b}_0 - BD^{-1}\hat{\mathbf{b}}),$$

(3.11b)
$$D\hat{\mathbf{x}} = (\hat{\mathbf{b}} - C\mathbf{x_0}).$$

The main part of the computation is the solution of the block-bidiagonal sys-

tems with the matrix D, corresponding to the computation of $D^{-1}C$, $D^{-1}\hat{\mathbf{b}}$. By putting $C = [C|\hat{\mathbf{b}}]$, $\tilde{V} = [V|\mathbf{w}]$, where $V = D^{-1}C$, $\mathbf{w} = D^{-1}\hat{\mathbf{b}}$, we have that the system $D\tilde{V} = \tilde{C}$ is solved by the recursion:

(3.12)
$$\widetilde{V}_{j} = R_{j}^{-1} (\widetilde{C}_{j} - S_{j} \widetilde{V}_{j-1}), \quad j = 1, \cdots, J,$$

where $\widetilde{V}_0 \equiv 0$, and the \widetilde{V}_j , \widetilde{C}_j correspond to the appropriate partitionings of \widetilde{V} , \widetilde{C} . Naturally, the matrices R_j are not inverted, but, rather, a good Gaussian elimination code with pivoting is used to solve the corresponding matrix systems. This provides what Keller [11] calls partial pivoting. With \widetilde{V} , (3.11) reduces to the solution of the linear system

$$(3.13a) \qquad (A - BV)\mathbf{x}_0 = (\mathbf{b}_0 - B\mathbf{w}),$$

$$(3.13b) \qquad \qquad \tilde{\hat{\mathbf{x}}} = \mathbf{w} - V \mathbf{x}_{\mathbf{o}}.$$

Observe that in most cases the block-vector B will be quite sparse since there will usually be many more grid points than boundary points. This should be taken into account in the computation.

4. The Adaptive Method. In [19], a variable order algorithm based on results similar to those of Section 3 was developed for the two-point boundary value problem for second order equations. It was indicated there that the scheme had more general applications, as we shall proceed to show now (cf. [20] also).

The problem we set ourselves to solve is the following: "Given a boundary value problem (1.1), a basic mesh Ω_h (containing the boundary points τ_i , $i = 1, \dots, N$), and a tolerance TOL, find an approximate solution Y^* defined (at least) on Ω_h and satisfying

$$\|Y^* - \phi_{\mu} y^*\| \leq \text{TOL.}''$$

The basic mesh Ω_h is the region in which the user wants to know the solution (minimal description):

$$(4.2) ^{\prime} \Omega_{h} = \{t_{j}\}_{j=0,\dots,J}.$$

We define the indices j_i , by

(4.3)
$$t_{j_i} = \tau_i, \qquad i = 1, \cdots, N,$$
$$\nu_i = j_{i+1} - j_i + 1, \qquad i = 1, \cdots, N - 1,$$

and

$$\eta = \min_{i} v_{i}$$

By $\Omega_{h/2}$, we shall denote the refinement of Ω_h obtained by including all the midpoints $t_{i-1} + \frac{1}{2}h_i$. Thus, J becomes 2J.

Algorithm. Let k = 0.

If $\eta \ge 4$, then we can compute S_1 (cf. (3.1) and (3.5)). In that case, on Ω_h , we solve $\Phi_h(Y) = 0$ for $Y^{(0)}$, and also solve $\Phi'_h(Y^{(0)})\Delta = -S_1(Y^{(0)})$ for $\Delta^{(0)}$. Since $\|\Delta^{(0)}\|$ is an error estimate for $\|Y^{(0)} - \phi_h y^*\|$, we check if $\|\Delta^{(0)}\| \le$ TOL and, if this condition is satisfied, we exit successfully.

If $\eta < 4$, then the first step just described cannot be performed and we refine the mesh and try again. If OLDERROR $\equiv ||\Delta^{(0)}|| > \text{TOL}$, then we enter in the general correction loop:

Correction loop: set k equal to k + 1; if $\eta < 2k + 2$ then refine the mesh; otherwise solve for $Y^{(k)}$ the nonlinear equation:

$$\Phi_h(Y) = S_k(Y^{(k-1)}).$$

Compute and save $S_{k+1}(Y^{(k)})$. Solve for $\Delta^{(k)}$ the linear equation:

$$\Phi'_{h}(Y^{(k)})\Delta = S_{k}(Y^{(k-1)}) - S_{k+1}(Y^{(k)});$$

if NEWERROR $\equiv \|\Delta^{(k)}\| \leq \text{TOL}$, then exit successfully; otherwise if NEWERROR $\leq C * \text{OLDERROR}$ (where $0 < C \leq 1$) then set OLDERROR to NEWERROR and go to Correction loop; otherwise refine the mesh end.

The strategy behind this algorithm is that the highest order method compatible with the current mesh is always used, unless the level of diminishing returns is reached and no further improvement is obtained by increasing the order on the present mesh. This last decision corresponds to the condition NEWERROR $\leq C *$ OLDERROR, where the constant C measures the minimum rate of improvement required of a correction in order to continue on the given mesh. This strategy is dictated by the accumulated experience on multiple applications that indicates that greater efficiency is achieved in this way than by refining the mesh prematurely. (Recall that the dimensionality of the problem increases when the mesh is refined.)

Another important feature, especially for nonlinear problems, is the following. After the very first step on the basic mesh, where, usually, we will not have good initial values, we can count on accurate initial values for starting all the successive iterations. In fact, to solve the equations $\Phi_h(Y) = S_k(Y^{(k-1)})$, we can use

as starting values $Y^{(k-1)}$ itself, while, upon refinement of the mesh, we can use the latest value of Y on the coarse mesh, plus values interpolated from them for the missing points in the new mesh.

The error estimate NEWERROR is profitably used in two ways, aside from the one already mentioned above. After the first step of the process, we use it to set the level, at which the residual in the solution of the nonlinear equations, must be reduced, in the next step. When the grid is refined, the degree of interpolation used to produce initial values for the new grid points, and the level of correction at which the process will start, are also decided on the basis of information related to earlier estimates. When convergence of Newton's method cannot be achieved due to lack of information to start the process, one might be forced to resort to more elaborate techniques, as we exemplify in Section 7.

5. Numerical Results. In this section, we shall report on a fairly extensive set of tests, mostly collected in the open literature. In all cases, we write the equations as first order systems, although in the references they might have been treated as high order equations. All results have been obtained on an IBM/360 model 50 computer working with long words (\approx 16 decimal digits), using the FORTRAN program SYSSOL listed in the Appendix. There are two user parameters that must be given to SYSSOL: TOL = user's desired accuracy (see 4.1) and N = number of points in the initial mesh.

Problem 1.

$$y'_{1} = y'_{2},$$

$$y'_{2} = y^{3}_{1} - \sin t (1 + \sin^{2} t),$$

$$y_{1}(0) = y_{1}(\pi) = 0.$$

Exact solution. $y_1(t) = \sin t; y_2(t) = \cos t$.

In [19], an adaptive method for second order equations was developed using as a basic discretization the $O(h^4)$ Milne-Numerov formula. Results obtained with SYSSOL are listed in Table 1. The user parameters were: $TOL = 5 \times 10^{-15}$ and N = 9.

	TABLE 1							
	Final estimated error	Final true error	Number of corrections	Final mesh size				
SYSSOL	3.2, - 15	2.2, - 15	6	33				
[19]	7.0, – 17	2.8, - 15	3	33				

M. LENTINI AND V. PEREYRA

We observe in Table 1 that very similar results are obtained with both methods, but, reflecting the fact that 4 orders are gained per correction, the method of [19] requires only half the number of corrections. Computer times are unfortunately non-comparable, since the results for [19] were obtained on an IBM/360 Model 91. However, we believe that the technique of [19] should be preferred whenever it applies. As a matter of reference, the computer time on an IBM/360/50 for SYSSOL was 13.12 sec.

Problem 2.

 $y'_{1} = y_{2},$ $y'_{2} = 400(y_{1} + \cos^{2} \pi t) + 2\pi^{2} \cos 2\pi t,$ $y_{1}(0) = y_{1}(1) = 0.$

Exact solution.

$$y_1(t) = \frac{e^{-20}}{1 + e^{-20}} e^{20t} + \frac{1}{1 + e^{-20}} e^{-20t} - \cos^2 \pi t,$$

$$y_2(t) = \frac{20e^{-20} e^{20t}}{1 + e^{-20}} - \frac{20}{1 + e^{-20}} e^{-20t} + \pi \sin 2\pi t.$$

In Stöer and Bulirsch [24, Chapter 2, §6], this example is used to compare the following methods:

(Ma) Simple shooting method (obviously, the example is designed to fail for this method, and so it does);

(Mb) Multiple shooting of Bulirsch;

(Mc) $O(h^2)$ finite difference method for second order equations;

(Md) Variational method using cubic splines.

We thank Professor Stöer for making his results available to us before [24] was ready.

In Table 2, we compare the maximum absolute errors of the various methods with those obtained by SYSSOL, with TOL = 5×10^{-11} , N = 65.

IABLE 2	2
---------	---

	Max. abs. error	Comments
Ma	1.3, – 3	
Mb	5.0, - 12	20 intermediary points.
Mc	5.6, - 6	2 ¹⁰ mesh points.
Md	1.8, -6	100 subintervals.
SYSSOL	9.9, - 12	65 mesh points; 7 corrections.
		21.74 sec. of computing time.

,

Problem 3.

$$y'_{1} = y'_{2},$$

 $y'_{2} = e^{y'_{1}},$
 $y(0) = y(1) = 0$

Exact solution.

$$y_{1}(t) = -\ln 2 + 2\ln \left[c * \sec\left(\frac{c}{2}\left(t - \frac{1}{2}\right)\right)\right],$$
$$y_{2}(t) = c * \tan\left(\frac{c}{2}\left(t - \frac{1}{2}\right)\right),$$

where c satisfies $c \ast \sec c/4 = \sqrt{2}$. To 16 significant figures, c = 1.336055694906108....

This problem has been solved by a variety of techniques in [2], [5], [7], [11], [19 [21]. In Table 3, we present some comparative figures. A description of the various methods follows (in some cases, we have chosen only the most accurate results):

- M1: Ritz-Galerkin with polynomial subspaces P₀^(N).
 Basis: indefinite integrals of Legendre polynomials.
 Iterative method: Gauss-Seidel-Newton [2].
- M2: Ritz-Galerkin with cubic Hermite subspaces $H_0^{(2)}$, coupled with four-point Gaussian quadrature scheme [5].
- M3: Ritz-Galerkin with smooth cubic splines $S_p(D^2, \Delta(h), \overline{z})$ [7].
- M4: Keller's method with Richardson's extrapolations, [11].
- M5: $O(h^8)$, Milne-Numerov, linear deferred corrections [19].
- M6: Milne-Numerov with successive extrapolations [19].
- M7: Adaptive deferred corrections (SYSSOL).

We report max. abs. error for each method.

Comments
Dimension of $P_0^{(N)} = 6$.
Dimension of $H_0^{(2)} = 24$.
Dimension of $S_n^{(2)} = 16$.
Three extrapolations. Basic mesh, $h = 1/3$.
N = 8.
Two extrapolations. Basic mesh, $h = 1/4$.
$k = 2$. $N_0 = 9$. N final = 17.
Time on IBM 360/50: 4.1 seconds.
$k = 4$. $N_0 = 17$. N final = 33.
Computer time: 8.76 seconds.

TABLE 3

We observe that the only results with an accuracy comparable to SYSSOL are those obtained with successive extrapolations (a very near cousin!) but that, as usual, the accurate results correspond only to the coarsest mesh used (with 2 and 3 interior points respectively in M4 and M6).

Problem 4. (Bending of a thin beam clamped at both ends.)

$$y'_{1} = y_{2},$$

$$y'_{2} = y_{3},$$

$$y'_{3} = y_{4},$$

$$y'_{4} = (t^{4} + 14t^{3} + 49t^{2} + 32t - 12)e^{t},$$

$$y_{1}(0) = y_{2}(0) = y_{1}(1) = y_{2}(1) = 0.$$

Exact solution. $y(t) = t^2(1-t)^2 e^t$.

In [2], [5], this problem is solved by a variational method using smooth Hermite subspaces $H_0^{(2)}(\pi)$ of piecewise cubic polynomials.

In Table 4, we compare max. abs. errors for the solution and its first derivative. The value of k indicates the final number of correction terms.

TABLE	4	

Method	Max. abs. error function	Max. abs. error derivative
Ritz-Galerkin $H_0^{(2)}$ of dim. 46	1.70, – 6	1.27, – 4
SYSSOL 17 points k = 2	4.70, – 7	9.03, – 7
SYSSOL 33 points k = 6	1.82, – 14	9.65, - 15

The computer time on an IBM 360/50 for the most accurate results was of 13.82 sec., using 138 K.-bytes of main storage.

Problem 5.

$$y'_{1} = y_{2},$$

$$y'_{2} = \beta(y_{1} - y_{3}),$$

$$y'_{3} = y_{4},$$

$$y'_{4} = \alpha(y_{3} - y_{1}),$$

$$y_{1}(0) = y_{4}(0) = y_{2}(s) = 0;$$

$$y_{4}(s) = c,$$

with $s = 10, c = 10^{-3}, \alpha = \beta = 2.5$. Exact solution.

$$y_{1} = \frac{\beta c}{r^{2}} \left[\gamma/r + t - \gamma \cosh(rt)/r + \frac{\beta}{\alpha} \sinh(rt)/r \right],$$

$$y_{2} = \frac{\beta c}{r^{2}} \left[1 - \gamma \sinh(rt) + \frac{\beta}{\alpha} \cosh(rt) \right],$$

$$y_{3} = \frac{c}{r^{2}} \left[\beta \gamma/r + \beta t + \alpha \gamma \cosh(rt)/r - \beta \sinh(rt)/r \right],$$

$$y_{4} = \frac{c}{r^{2}} \left[\beta + \alpha \gamma \sinh(rt) - \beta \cosh(rt) \right],$$

where

$$r = \sqrt{\alpha + \beta}, \qquad \gamma = \left(\frac{\beta}{\alpha}\cosh(rs) + 1\right) / \sinh(rs).$$

In [3], Falkenberg solves this problem by a method he calls "step wise inversion" which is related to the Godunov-Conte method. This is also a problem which is unstable for simple shooting. In Table 5 we show again max. abs. errors for the various components as obtained with Falkenberg's algorithm and with SYSSOL.

TABLE 5

Method	max. abs. error in y ₁	max. abs. error in y ₂	max. abs. error in y_3	max. abs. error in ^y 4
Falkenberg 10 steps	10 ⁻⁸	10 ⁻⁹	10 ⁻⁸	10 ⁻⁹
SYSSOL 33 points k = 7	6×10^{-11}	1.5×10^{-10}	3.3×10^{-11}	6.4×10^{-11}

Computer time on IBM 360/50 was 36.10 sec. for $N_0 = 9$.

Finally, in Table 6, we present the results of a fairly extensive set of tests, which shows the behavior of SYSSOL on the five problems of this section for different tolerances and initial step sizes.

Proble	m		T					2		
TOL	5	9	17	33	65	5	,9	17	33	65
10-3	.96 (9)	.83 (9)	1.61 (17)	2.01 (33)	4.57 (65)	9.36	7.42	6.27	4.84	8.51
10 ⁻⁶	3.27 (17)	3.21 (17)	2.89 (17)	3.19 (33)	6.19 (65)	15.09 (33)	13.87 (33)	10.73 (33)	10.69 (33)	13.39 (65)
10-9	5.07 (17)	5.2 (17)	4.75 (17)	6.73 (33)	11.48 (65)	26.89 (65)	26.77 (65)	25.39 (65)	26.09 (65)	17.18 (65)
Problem	m		3					4		
TOL NO	5	9	17	33	65	5	9	17	33	65
10-3	.56 (9)	.38 (9)	.73 (17)	1.41 (33)	4.90 (65)	3.16 (9)	2.51 (9)	3.22 (17)	6.40 (33)	13.11 (65)
10-0	1.38 (9)	1.03 (9)	1.26 (17)	2.81 (33)	6.45 (65)	6.65 (17)	6.24 (17)	6.57 (17)	9.86 (33)	18.98 (65)
10-9	2.61	2.57	2.51	(33)	7.85	10.71	10.23	8.83	14.56	18.68
	(1/)	(1/)	<u><u> </u></u>	(33)	(03)	(17)	(1/)		(33)	(05)

Т	A	B	L	Е	6

Probler	n		5		
TOL NO	5	9	17	33	65
10-3	2.22 (9)	1.73 (9)	1.61(17)	3.37 (33)	7.23 (65)
10-6	18.02 (33)	17.50 (33)	14.04 (33)	11.56 (33)	13.09 (65)
10-9	29.81 (33)	29.12 (33)	25.07 (33)	23.32 (33)	26.35 (65)

Time in seconds needed to reach the indicated TOLerances in Problems 1 to 5. The number in parentheses is the final number of points in the mesh. The boxes indicate the minimum time for fixed problem and tolerance.

The tolerances chosen (values of TOL) could be described as low, medium and medium-high, while, in the individual results already given, we exemplified the results for high precision (on this computer). These results are important since they show that the algorithm is not geared exclusively towards high precision, which might be inadequate in many present day applications, but also performs economically at "engineering precisions".

We observe in Table 6 that for each problem and a given tolerance (horizontal lines), the final number of mesh points N_f is independent of the initial one N_0 , until $N_0 > N_f$, when they start coinciding. What is more important, the minimum time, for given problem and tolerance (marked by a box), is attained when N_0 reaches N_f . We shall call the mesh with this number of points \overline{N} (TOL): the optimal mesh for the problem (and tolerance). There is only one exception in the 15 cases shown: Problem 4, TOL =

 10^{-6} . However, we see that the difference in times falls in the area of uncertainty due to the multiprogramming environment (about 10%). Therefore, it would be quite important, from the point of view of this algorithm, to be able to predict \overline{N} (TOL) early in the game.

Another point shown in this table is that underestimating $\overline{N}(\text{TOL})$ is less costly than overestimating it. Very schematically, we can subsume the results of Table 6 in the following diagram, where we present the curves time/(minimum time) versus $\log_2(N_0 - 1)$ for two hypothetical, though typical, cases.

6. Piecewise Smooth Data. In [9], Keller develops, in all detail, the theory mentioned in Section 2, restricted to the linear case but allowing jump discontinuities in the function $f(t, y(t)) \equiv A(t)y(t) + g(t)$. The only restriction is that those discontinuities must be limited to occur on the set of boundary points. In Section 3, we introduced a limitation stronger than necessary in the way by which the correction operators S_k were calculated. This was done foreseeing the extension to the piecewise smooth case. In fact, the only care we must exert in order that the whole theory (and practice) of deferred correction holds true in this case, is not to straddle discontinuities in the calculation of the S_k . By working systematically on the smooth subintervals, all the necessary expansions are valid (cf. [9]).

The only small modifications that must be introduced in the general routine are due to the fact that, at discontinuity points, we must use the proper information. For instance, let $t_{j_i} = \tau_i$ be a discontinuity point of f(t, y(t)), and let $f_{j_i}^-, f_{j_i}^+$ be the respective one-sided limits. Then

$$N_{h}u_{j_{i}} \equiv \frac{1}{h_{j_{i}}}(u_{j_{i}} - u_{j_{i}-1}) - \frac{1}{2}[f_{j_{i}-1} + f_{j_{i}}],$$

and

$$N_{h}u_{j_{i}+1} \equiv \frac{1}{h_{j_{i}+1}}(u_{j_{i}+1} - u_{j_{i}}) - \frac{1}{2}[f_{j_{i}}^{+} + f_{j_{i}+1}].$$

Similar care must be exerted in the implementation of formula (3.3) and in the computation of the Jacobian. However, the same code as for the smooth case can be used for computing the S_k at each subinterval $[\tau_i, \tau_{i+1}]$, i.e., for $(t_{j-1} + \frac{1}{2}h_j)$, $j = j_i + 1, \dots, j_{i+1}$.

Problem 6.

$$y'_{1} = y_{2},$$

$$y'_{2} = y_{3},$$

$$y'_{3} = y_{4},$$

$$y'_{4} = \begin{cases} 24, & 0 \le x \le 1/2, \\ 48, & 1/2 \le x \le 1, \end{cases}$$

$$y_{1}(0) = y_{2}(0) = y_{1}(1) = y_{2}(1) = 0.$$

Exact solution.

$$y_{1}(t) = \begin{cases} t^{4} - \frac{19}{8}t^{3} + \frac{21}{16}t^{2}, & 0 \le t \le 1/2, \\ 2(t-1)^{4} + \frac{29}{8}(t-1)^{3} + \frac{27}{16}(t-1)^{2}, & 1/2 \le t \le 1. \end{cases}$$

$$P_{2}(t) = \begin{cases} 4t^{3} - \frac{57}{8}t^{2} + \frac{21}{8}t, & 0 \le t \le 1/2, \\ 0 \le 57 & 0 \le 27 \end{cases}$$

$$y_2(t) = \begin{cases} 0 & 0 \\ 8(t-1)^3 + \frac{57}{8}(t-1)^2 + \frac{27}{8}(t-1), & 1/2 \le t \le 1. \end{cases}$$

$$y_{3}(t) = \begin{cases} 12t^{2} - \frac{57}{4}t + \frac{21}{8}, & 0 \le t \le 1/2, \\ 24(t-1)^{2} + \frac{57}{4}(t-1) + \frac{27}{8}, & 1/2 \le t \le 1. \end{cases}$$

$$y_4(t) = \begin{cases} 24t - 57/4, & 0 \le t \le 1/2, \\ 48(t-1) + 57/4, & 1/2 \le t \le 1. \end{cases}$$

In [21], this discontinuous problem is solved by a variational method using cubic Hermite spaces $H_0^{(2)}$. In that paper, a comparison is made with a finite difference method, showing the dangers of a naive approach to the problem. In Table 7 we compare the variational method with our finite difference method.

	TABLE 7	
Method	max. abs. error	Comments
Variational	1.25, - 5	Dimension of $H_0^{(2)} = 18$
Five-point finite differences	8.53, - 3	79 mesh points
SYSSOL	4.43, -6	9 points 1 correction
SYSSOL	1.39, - 17	33 points5 corrections

One of the main points made in [21], when comparing the variational method with the finite difference method, was that while the former method showed a perfect asymptotic behavior, the latter failed to show even second order convergence, and computations on various meshes had a very erratic behavior. The reason for these results is apparent to us now: the 5-point finite difference method straddled the singularity at 1/2 for points near it, while the cubic Hermite method, being essentially a two-point method did not. That is the reason why our finite difference method is also impervious to the jump discontinuity. Our last piece of evidence is to show then that our method has the proper asymptotic behvaior, and we do that in Table 8.

N is the number of mesh points, k is the correction number, and the number in parentheses after a correction column is the computed order of the method for that column. The theoretical order for correction k is $O(h^{2k+2})$.

$N \backslash k$	0		1		2		3	
9	6.05, - 3	_	4.43, - 6	_	_		_	_
17	1.53, - 3	(2.0)	2.75, -7	(4.0)	1.08, - 9	(6.0)	4.22, - 12	_
33	3.82, -4	(2.0)	1.72, -8	(4.0)	1.68, - 11	(6.0)	1.65, - 14	(8.0)
65	9.56, - 5	(2.0)	1.07, - 9	(4.0)	2.62, -13	(6.0)	6.94, - 17	(7.9)

TABLE 8

Problem 6 is linear and has a piecewise polynomial solution: a fairly favorable case.

The following is a nonlinear problem with a nonpolynomial solution with discontinuous second derivative. Problem 7.

$$y'_{1} = y_{2},$$

$$y'_{2} = \begin{cases} -e^{y_{1}}/x^{3}, & 1 \le x < 1.5, \\ 0, & 1.5 \le x \le 2, \end{cases}$$

$$y_{2}(1) = 0, \quad y_{2}(2) = 2/3.$$

Exact solution.

$$y_1(x) = \begin{cases} \ln x, & 1 \le x < 1.5, \\ \frac{2}{3}x + \ln 1.5 - 1, & 1.5 \le x \le 2, \end{cases} \qquad y_2(x) = \begin{cases} 1/x, & 1 \le x < 1.5, \\ 2/3, & 1.5 \le x \le 2. \end{cases}$$

User parameters for this problem were $N_0 = 65$, TOL = 5×10^{-15} . With four corrections on this mesh and a total of eight Newton iterations the tolerance was met, using 18.07 sec. of computing time.*

The results of this section were obtained with a more primitive (and modified) version of SYSSOL, and are reported only as a matter of reference.

7. Use of a Continuation Method for Stubborn Problems. In [15], [22], [23], some more challenging problems appear. These are "horror" problems generally appearing in practical applications which have resisted the action of most methods. Some of them are impervious to the use of shooting methods, while others present difficulties in the convergence of the iterations used for the solution of the nonlinear equations that occur in the various methods. Difficulties with the simple shooting method have been avoided in many cases by resorting to the more sophisticated technique of parallel shooting [8], [15], which is essentially a hybrid, combining shooting with finite differences. As we have already shown in Problem 2, our algorithm can also overcome the difficulties originated by unstable or stiff systems. In the following problem, however, we found for the first time divergence in Newton's method, when starting from our usual crude values $y_i(t_j) \equiv 0$. Thus, we have been forced to employ a more sophisticated technique for solving the nonlinear equations.

Problem 8. (A boundary layer problem.)

$$y'_{1} = y_{2},$$

$$y'_{2} = y_{3},$$

$$y'_{3} = -1.55y_{1}y_{3} + .1y_{2}^{2} + 1 - y_{4}^{2} + .2y_{2},$$

$$y'_{4} = y_{5},$$

$$y'_{5} = -1.55y_{1}y_{5} + 1.1y_{2}y_{4} + .2(y_{4} - 1),$$

$$y_{1}(0) = y_{2}(0) = y_{4}(0) = y_{2}(3.5) = 0, \quad y_{4}(3.5) = 1$$

^{*} We acknowledge here the tele-debugging abilities of Professor H. B. Keller who discovered an error in the Jacobian matrix in an earlier version, without ever seeing the program.

Exact solution. Unknown.

In [6], Holt presents a numerical solution in graphic form obtained via an ad hoc finite difference method and reports difficulties obtaining initial values. In [15], Osborne uses parallel shooting with success depending again upon the initial values, but, unfortunately, no information is given about the computed solution. In [23], Roberts, Shipman and Ellis replace the system by

(7.1)
$$y' = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0.2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0.2 & 0 \end{bmatrix} y + \epsilon_{v} g(t, y)$$
$$\equiv Cy + \epsilon_{v} g(t, y),$$

where $Cy + g \equiv f$. They use a continuation method [14] consisting of setting $\epsilon_{\nu} = \epsilon_{\nu-1} + \Delta \epsilon$, $\nu = 1, \dots, \epsilon_0 = 0$, and solving the intermediate problems by simple shooting until ϵ_{ν} reaches the value 1, where the original problem is recovered. A table of the computed missing boundary values is offered, though no mention of their accuracy is made. In the intermediate problems, (it seems), ten iterations are performed, presumably each one of them costing the integration of an initial value problem. No indication of computer times are given.

We have chosen to use a variation of this procedure in which only *one* Newton step is performed for each ϵ_{ν} , since our aim is simply to provide initial values to start a successful iteration for $\epsilon_{\nu} = 1$. This goal has been achieved and highly accurate results have been obtained as we show below. Again, the changes in the main program have been minimal; this is offered as an option in the final library subroutine.

In Table 9, we list the calculated missing boundary conditions of Roberts et al., and those obtained with SYSSOL modified as indicated above. We used $\Delta \epsilon = .1$. As usual, k is the correction number. N was 65.

The computer time on an IBM 360/50 was 135.28 sec.

The program SYSSOL given in the Appendix will perform continuation automatically as an option. The user has to embed his problem in a one parameter family of problems

$$y' = f(t, y; \epsilon),$$

such that, for $\epsilon = 0$, the problem is "simple", and, for $\epsilon = 1$, the original problem is recovered. This option is considered automatically whenever the parameter DELEPS $\epsilon(0, 1)$. It is the responsibility of the user to have the appropriate subroutine for calculating $f(t, y; \epsilon)$ and its Jacobian. In this case, initial values for Y must also be given.

Method	y ₃ (0)	y ₅ (0)	y ₁ (3.5)	y ₃ (3.5)	y ₅ (3.5)
[23]	-0.97819707	0.64678660	-1.5308940	1.1744953	-0.31437074
SYSSOL					
k=0	-0.97793385	0.64706375	-1.5300011	1.1731673	-0.31483749
k≓1	-0.97819829	0.64678677	-1.5308960	1.1745015	-0.31437128
k=2	-0.97819758	0.64678682	-1.5308941	1.1744980	-0.31437042
k=3	-0.97819757999 •	0.64678682479 .	-1.5308940685	1.1744981003	-0.31437042497
k=4	-0.97819757997	0.64678682478	-1.5308940684	1.1744981012	-0.31437042438

TABLE 9

We point out that our asymptotic error estimate indicates that the max. abs. error on all the components (for k = 4) is equal to 6.67×10^{-11} , tending to confirm that all the figures shown in the last line of Table 9 are exact.

8. Generalization of the Milne-Numerov Method to Even-Order Systems of Special Type. In this section we shall consider systems of the form:

(8.1)
$$y^{(2r)} = f(t, y, y^{(2)}, \dots, y^{(2r-2)})$$

with separable two-point boundary conditions. Such systems can always be reduced to larger second order systems with no first derivatives present. Thus, without loss of generality, we consider instead:

(8.2)
$$y'' - f(t, y) = 0$$

with the boundary conditions

$$y(a) = \alpha, \quad y(b) = \beta, \text{ and } y(t) = (y_1(t), \dots, y_n(t)).$$

Taking a uniform mesh with step h, we discretize these systems with the threepoint Milne-Numerov formula (cf. [4], [12], [17] for n = 1).

(8.3)
$$N_{h}u_{j} = \frac{1}{h^{2}}(u_{j-1} - 2u_{j} + u_{j+1}) - \frac{1}{12}(f_{j-1} + 10f_{j} + f_{j+1}) = 0,$$
$$j = 1, \dots, J-1.$$

For smooth f, the whole one-dimensional theory can be generalized to this *n*-dimensional case. The linear systems appearing in the application of Newton's method to (8.3) are block-tridiagonal and various techniques can be used in their solution. Observe that the resulting method is $O(h^4)$ and, therefore, deferred corrections will

provide methods of order $O(h^{4k})$. Also, the fact that we deal with second order systems means that only half the number of equations are used that would be necessary upon reduction to first order systems. This type of problem appears for instance in the two-body equations of motion (cf. [22]), and in systems arising from the Schrödinger equation [1].

Acknowledgement. The accurate typing of this paper was produced in minimal time by Miss Brunilda Cerceau to whom we are very thankful.

Departamento de Computacion Universidad Central de Venezuela Apartado 59002 Caracas, Venezuela

Appendix. In the microfiche section of this journal, we present a FORTRAN (level G) implementation of Subroutine SYSSOL, for solving nonlinear two-point boundary value problems for first order systems of the form:

$$y' - f(t, y) = 0, \quad a < t < b,$$

$$4y(a) + By(b) = \alpha,$$

where $y(t) = (y_1(t), \dots, y_m(t))^T$, $\alpha \in \mathbb{R}^m$ given, and A, B are given $m \times m$ matrices.

The program contains its own documentation and, we hope, is fairly readable. We have added the driver program and all the necessary subroutines to produce the results presented in Table 6.

The subroutine itself contains no input-output instructions and, therefore, it should be fairly transportable. There is only one instruction (the definition of EPSMAC), clearly marked, which is machine dependent. In [19, p. 74] can be found a flow-chart which is sufficiently close to give additional information on the functioning of SYSSOL.

The authors assume no responsibility for any damages that this subroutine may cause, but they will be happy to answer any comments or complaints.

1. A. C. ALLISON, "The numerical solution of coupled differential equations arising from the Schrödinger equation," J. Computational Phys., v. 6, 1970, pp. 378-391. MR 43 #1438.

2. P. G. CIARLET, M. H. SCHULTZ & R. S. VARGA, "Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One dimensional problem," *Numer. Math.*, v. 9, 1967, pp. 394-430. MR 36 #4813.

3. J. C. FALKENBERG, "A method for integration of unstable systems of ordinary differential equations subject to two-point boundary conditions," Nordisk Tidskr. Informationsbehandling (BIT), v. 8, 1968, pp. 86-103. MR 39 #1123.

4. P. HENRICI, Discrete Variable Methods in Ordinary Differential Equations, Wiley, New York, 1962. MR 24 #B1772.

5. R. J. HERBOLD, M. H. SCHULTZ & R. S. VARGA, "The effect of quadrature errors in the numerical solution of boundary value problems by variational techniques," *Aequationes Math.*, v. 3, 1969, pp. 247-270. MR 41 #6410.

6. J. F. HOLT, "Numerical solution of nonlinear two-point boundary value problems by finite difference methods," Comm. ACM, v. 7, 1964, pp. 366-373. MR 29 #5387.

7. J. W. JEROME & R. S. VARGA, "Generalizations of spline functions and applications to nonlinear boundary value and eigenvalue problems," *Theory and Applications of Spline Functions* (edited by T. N. E. Greville), (Proc. Sem. Math. Research Center, Univ. of Wisconsin, Madison, Wis., 1968), Academic Press, New York, 1969, pp. 103-155. MR 39 #685,

8. H. B. KELLER, Numerical Methods for Two-Point Boundary-Value Problems, Blaisdell, Waltham, Mass., 1968. MR 37 #6038.

9. H. B. KELLER, "Accurate difference methods for linear ordinary differential systems subject to linear constraints," *SIAM J. Numer. Anal.*, v. 6, 1969, pp. 8-30. MR 40 #6776.

10. H. B. KELLER, "A new difference scheme for parabolic problems," Numerical Solution of Partial Differential Equations, II (edited by B. Hubbard) (SYNSPADE, 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970), Academic Press, New York, 1971, pp. 327-350. MR 43 #2866.

11. H. B. KELLER, "Accurate difference methods for nonlinear two-point boundary value problems," (manuscript, 1972).

12. M. LEES, "Discrete methods for nonlinear two-point boundary value problems," *Numerical Solution of Partial Differential Equations* (edited by J. H. Bramble) (Proc. Sympos. Univ. Maryland, 1965), Academic Press, New York, 1966, pp. 59-72. MR 34 #2196.

13. M. LENTINI, Correcciones diferidas para problemas de contorno en sistemas de ecuaciones diferenciales ordinarias de primer orden, Pub. 73-04, Depto. de Comp., Fac. Ciencias, Univ. Central de Venezuela, Caracas, 1973.

14. J. M. ORTEGA & W. C. RHEINBOLDT, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970. MR 42 #8686.

15. M. R. OSBORNE, "On shooting methods for boundary value problems," J. Math. Anal. Appl., v. 27, 1969, pp. 417-433. MR 39 #6521.

16. V. PEREYRA, "Iterated deferred corrections for nonlinear operator equations," Numer. Math., v. 10, 1967, pp. 316-323. MR 36 #4812.

17. V. PEREYRA, "Iterated deferred corrections for nonlinear boundary value problems," Numer. Math., v. 11, 1968, pp. 111-125. MR 37#1091.

18. V. PEREYRA, "Highly accurate numerical solution of casilinear elliptic boundary value problems in *n* dimensions," *Math. Comp.*, v. 24, 1970, pp. 771-783. MR 44 #6165.

19. V. PEREYRA, High Order Finite Difference Solution of Differential Equations, Stanford Univ. Comp. Sci. Report STAN-CS-73-348, 1973.

20. V. PEREYRA, "Variable order variable step finite difference methods for nonlinear boundary value problems," *Proceedings Conference on the Numerical Solution of Differential Equations*, Dundee, Scotland, Springer-Verlag, Berlin, 1973.

21. F. M. PERRIN, H. S. PRICE & R. S. VARGA, "On higher-order numerical methods for nonlinear two-point boundary value problems," *Numer. Math.*, v. 13, 1969, pp. 180-198. MR 40 #8276.

22. S. M. ROBERTS & J. S. SHIPMAN, "The Kantorovich theorem and two-point boundary value problems," *IBM J. Res. Develop.*, v. 10, 1966, pp. 402-406. MR **34** #2198.

23. S. M. ROBERTS, J. S. SHIPMAN & W. J. ELLIS, "A perturbation technique for nonlinear two-point boundary value problems," *SIAM J. Numer. Anal.*, v. 6, 1969, pp. 347-358. MR 40 #8277.

24. J. STOER & R. BULIRSCH, Einführung in die Numerische Mathematik II, Springer-Verlag, Berlin, 1973.

25. J. VARAH, On the Solution of Block Tridiagonal Systems Arising from Certain Finite-Difference Equations, Univ. British Columbia, Dept. Comp. Sci. Technical Report 72-02, 1972.

FORTRAN Implementation of Subroutine SYSSOL,

For Solving Nonlinear Two-Point Boundary Value Problems

For First Order Systems

by

M. LENTINI & V. PEREYRA

```
SUBROUTINE SYSSOL(M.N.A.8.ALPHA.AI.#1.TCL.DELEPS.X.Y.
* ABT.FF.JACGB.JERKGR)
00000
     PURPOSE : THIS IS A VARIABLE URDER, VARIABLE
(UNIFORM) STEP SOLVER FOR TWO-POINT BOUNDARY VALUE FIRST
GRDER SMOOTH NONLINEAR SYSTEMS OF THE FORM
        (1) Y" = F(X,Y) , A1 . Y(A) + 81 . Y(b) = 3LPHA
с
с
с
с
с
с
       IT ATTEMPTS TO PRODUCE A DISCRETE SOLUTION WITH MAXIMUM

ABSCLUTE ERROR LESS THAN TOL ON A UNIFORM GRID CONTAI-

NING THE ONE DEFINED BY THE USER WITH THE PARAMETP N.

THE METMOD, MORE DETAILS AND TESTS ARE DESCRIBED IN

"A VARIABLE CROBER, VARIABLE STEP, FINIT CIFFERANCE

METHOD FOR NONLINEAR, MULTIPOINT BCUNDARY VALUE PROBLEMS'

BY M. LENTINI AND V. PEREYRA, PUB. 73-06, DEPTO. DC

COMPUTACION, FAC. DE CIENCIAS, UNIVERSIDAD CENTRAL DE

"EMEZUELA (1973).

ENQUIRIES AND COMMENTS CAN BE ACDRESSED TU
c
č
с
с
с
c
        M& LENTINI AND V. PEREYRA
Departamentg de computación
Apartado 59002 - Caracas
ċ
č
č
     MADE IN VENEZUELA
                                                                                                     AUGUST 1973
C.
CONTINUE
Consistent de la constant de la const
C
          USE I PRESENT DIMENSIONING OF ARRAYS ALLEWS PRUCESSING
OF SYSTEMS OF UP TO
MAX = 1c Equations
on grids with up to
these sizes can be what = 650/m pcints.
These sizes can be wared by changing the
dimensions appropriately.
THE USER MUST SPECIFY EACH OF THE FOLLOWING:

    NUMBER CF EQUATIENS
    NUMBER CF EQUATIENS
    NUMBER CF POINTS IN THE BASIC GRIG (COUNTING THE
END POINTS), N MUST BE > 3.
UPON EXIT, N MILL CONTAIN THE FINAL GRIE SIZE
IN MHICH Y HAS BEEN COMPUTED.
    LEFT BOUNDARY POINT
    RIGHT BCUNDARY POINT
    ALPHA ,AI ,BI - ARAYS OF DIMENSIONS MMAX
CONTAINING BCUNDARY CCNGITIUNS-SEE(I)
```

С	TOL - DESIRED FINAL ABSOLUTE ERROR.
	CONTINUE
С	DELEPS - (A) IF DELEPS <= 0 THEN THE PROGRAM SETS Y=C AS
С	INITIAL VALUES.
c	IF DELEPS IS SET TO ANY VALUE >= 1 THEN THE
c	PROGRAM ASSUNES THAT THE USER WILL GIVE
c	INITIAL VALUES FOR Y. THESE INITIAL VALUES
č	(ON THE INITIAL MESH) MUST BE STURED AS
ċ	INDICATED BELOW (SEE OUTPUT PARAKETERS).
č	(B) A CONTINUATION METHOD CAN BE EMPLOYED AS AN
ĩ	OPTION IN SEVERELY NON LINEAR CASES IN
ē	ORDER TO GENERATE GOOD INITIAL VALUES. THIS
č	PRESUPOSES THAT THE USER HAS EMBEDDED HIS
č	PROBLEM IN A ONE DADAMETER CANSI VY
č	$\mathbf{v}_1 = \mathbf{f}(\mathbf{x}, \mathbf{v}, \mathbf{G} \mathbf{S} \mathbf{S} \mathbf{N} \mathbf{I})$
č	SUCH THAT FOR EDSNUL ON THE RECHLETING
ž	BOGGI EN TE SSETING ED AND EGO COCHI - 1
č	THE OPICIAL PROBLEM IS DECOMPRED THE
č	THE URIGINAL PRODUCT IS RELUVERED. THE
5	PROGRAM WILL AUTOMATICALLY ATTEMPT TO GO
Ľ.	FRUM EPSNU = U TU EPSNU = I IN STEPS OF
Ċ.	DELEPS. THUS IN THIS CASE
Ċ.	0 < DELEPS < 1
ç	UNCE EPSNU > = 1 THE REGULAR PROCEDURE
c	CONTINUES. THE USER MUST GIVE INITIAL
С	VALUES FOR Y AS IN (A).
	CONTINUE
С	WHEN USING THIS OPTION THE USER MUST
c	INCLUDE IN HIS SUBROUTINES FF, JACOB
С	THE COMMON CARDS
C	CGMMGN /C1/ EPSNU
С	IN CROER TO DESCRIBE THE PARAMETRIZED
С	PROBLEM
С	
C+:	***************************************
2	
č	AAA USED DROWIDED SURDOUTINES AAA
č	WALK FRUMIDLD SUDROUTINES THT
č	
2	
2	THE WHOLE WEEK THE CHARMITINE TICKLE WHET A
č	THE WHOLE HESH. THE SUBRUUTINE TISELF MUST BE
5	PREVIDEL BY THE USER AND IT SHOULD HAVE THE
ć.	FULLUNING MEADING
Č.	
•	SUBROUTINE FF(X,V,N,F)
÷.	
č	WHERE F IS THE VECTOR CONTAINING THE VALUES
č	
ĉ	OF F(X.Y). STORAGE OF F IS THE SAME AS THAT
	OF F(X,Y). STORAGE OF F IS THE SAME AS THAT OF Y (SEE BELGW)
	OF F(X,Y). STORAGE OF F IS THE SAME AS THAT OF Y (SEE BELGW) CONTINUE
	OF F(X,Y). STORAGE OF F IS THE SAME AS THAT OF Y (SEE BELGW) CONTINUE JACOB - NAME OF A SUBROUTINE FOR EVALUATING THE
	OF FIX, V). STORAGE OF F IS THE SAME AS THAT OF Y (SEE BELGN) Continue Jacob - name of a subroutine for evaluating the Jacob in of Fix, V) at a given grid point.
	OF FLXYI. STORAGE OF F IS THE SAME AS THAT DF Y (SEE BELGW) Continue Jacob - Name of a subroutine for evaluating the Jacobian of flxyyi at a given grid point. The subrouting itself must be provided by
	OF FIXYU. STORAGE OF F IS THE SAME AS THAT OF Y (SEE BELGN) Continue Jacob - Name of a subroutine for evaluating the Jacobian of fixyu) at a given grid peint. The subroutine itself must be provided by The USER, and it should have the following

~	
Ļ	HEADING: *
С	÷
с	•
C	SUBROUTINE JACOB(XX.YY.XJAC) *
č	
č	
Ľ.	WHERE AR IS THE GIVEN GRID PLINT, TY IS .
с	THE CURRENT VALUE OF Y AT XX, AND THE *
С	MMAX*MMAX ARRAY XJAC SHOULD BE FILLED BY *
с	THE USER WITH THE CORRESPONDING PARTIAL #
2	
	UERIVALIVES ACCORDING TO *
c	XJAC(I,J) = DFI/DYJ
С	*
C*	***************************************
-	CL NTINIE
*	
c	*
с	*** CUTPUT PARAMETERS *** *
С	*
č	SE: N ABOVE *
ž	
Ľ.	•
c	Y - NMAX*MMAX-VECTOR CONTAINING THE COMPUTED *
С	SOLUTION ON THE FINAL GRID *
ċ	THE GRID VECTOR FUNCTION Y(X) IS STORED +
č	CONCENTIALLY IN THE EDDN+
	SEQUENTIALET IN THE FORM
¢	11(X1), 12(X1),, 18(X1), 11(X2),, 18(XN),
С	THE PROGRAM SETS Y TO ZERO INITIALLY WHEN *
с	DELEPS <= G. *
ř	Y - NMAY-VECTOR CONTAINING THE FINAL GRID POINTS. *
č	
<u>ب</u>	ADI - H-VECTUR CUNTAINING HAA ADSULUTE ERROR ON THE
с	GRID FOR EACH COMPONENT OF THE APPROXIMATE *
с	SULUTION *
	CONT INUE
r	JERSTR - FRACE CODED INTEGER VARIABLE.
č	
	JERRIA - C REMOTED TOLERANCE WAS REACTED
ç	JERRUR = 1 H UR INITIAL N ARE UUT UP RANGE.
с	CORRECTING ACTION: CHECK THAT INPUT DATA *
с	SATISFIES C < M <= MMAX AND 3 < N <= NMAX ⇒
č	AND REPUN-
č	AND REPORT
Ľ.	JERRUK = 2 THE PRUGRAM HAS ATTEMPTED TO USP A GRID-
С	WITH MORE THAN NMAX POINTS *
с	CORRECTING ACTION: IF PARTIAL RESULTS SEEM *
c	REASONABLE. INCREASE REAXENMAX = 650 ANL
ĉ	CHANCE DIMENSIONS IN ALL SUBPOLITINES ACCORDING. #
č	The second to all of stars cated
<u>ر</u>	IN UNUER TO ALLOW FINER GRIDS
- C*	***************************************
	CONT INUE
C.*	***************************************
	*
2	
c	*** CIMER SOBROOITWES MEEDED &A SASSOF ***
С	•
С	SYSLIN - SOLVES A BLCCK LINEAR SYSTEM OF SPECIAL TYPE
ċ	DGELG - SOLVES A LINEAR SYSTEM OF EQUATIONS
č	DADDAY - TRANSFIDING BETHEEN THE AND ONE CIMENSICIAL
ž	CTORACT CONSTRUCTS DETWEEN THE AND ONE CIFLETICATE
Ċ,	SIURAGE +
с	UZDCGS - DEFERRED CURRECTION GENERATOR AND INTERPOLATION*

```
C COEGEN - WEIGHT GENERATOP
C
C
C
C
INPLICIT REAL®8(A-H,O-Z)
COMMON /CI/ EPSNU
LOGICAL DIVNEM
C
C
C IN CALLING PROGRAM THE PARAMETEP ARRAY X NUST 
C
C DIARNSIGNED AS X( 650/H )
C
          DIMENSION X(1)
 с
с
с
с
с
с
с
с
     DIMENSIONS INVOLVED IN THE FOLLCHING PARAMETER ARRAYS
Are MMAX = 10 and MMAX+MMAX = 650, and they must be
dimensioned accordingly in the calling program
          DIMENSION ALPHA(10),A1(10,10),B1(10,10),Y(650),ABT(10)
 C
C FOLLOWING ARRAYS ARE WORKING AREAS.
DIMENSION F(650),UU(650),RES(650),SK(650),
        +ABSEX(1C),ABR(1C),TEMP(10)
 C C C C C
     NORKING AREAS WITH SIZES RELATED TO MAX. NUMBER OF
Deferred corrections = 20 , which should be adequated
For all purposes.
 MMAX=10
MMAX=650/M
IF((M.E.E.)>.CR.(M.GT.MMAX).OR.(N.LE.3).UR.(N.GT.NMAX))GU TU 1
GC TO 10
Jeror=1
Return
 1
 ç....
 С
                             ERROR EXIT 1, .....
          INITIALIZATION
 ĉ
          MPN=M*N
 10
C

THIS CONSTANT IS MACHINE DEPENDENT:

C EPSNAC IS APPROXIMATELY 100 RELATIVE PRECISION OF

FLOATING POINT ARITHMETIC

EPSNAC5-5-D-15

C
          EPSNU=0.00
JERROR=0
```

```
M1-M2

M2-MM4

M2-MM4

M2-MM4

M2-MM4

F (DELEPS.GT.0.D0)GO TO 60

C

FIRST APPROXIMATION FOR Y

C

C DC 50 1=1.400

D0 105 1=2.56

D0 105 1=2.56

C MUS B REDUCED IN NORM BELOW EPS-CHM44, WHERE C IS

C MUS B REDUCED IN NORM BELOW EPS-CHM44, WHERE C IS

C A SMALL CORRECTION NU-0 THE RESIDUAL IN THE NEWTON ITERATION

C IN CORRECTION NU-0 THE RESIDUAL IN THE NEWTON ITERATION

C IN CORRECTION NU-0 THE RESIDUAL IN THE NEWTON ITERATION

C IN CORRECTION NU-0 THE RESIDUAL IN THE NEWTON ITERATION

C IN CORRECTION DUE OF MALE CONSTRUCTION

C IN CORRECTION DUE THE RESIDUAL IN THE NEWTON ITERATION

C CORRESPONDING TO CORRECTION (NU-1) FRECHT, MEERE C IS

C CORRESPONDING TO DE STAALTER THAN EPSENDON

C IS NOT ALLOWED TO BE STAALTER THAN EPSENDON

C IS NOT ALLOWED TO BE STAALTER THAN EPSENDON

C IS NOT ALLOWED TO BE STAALTER THAN EPSENDON

C IS NOT ALLOWED TO BE STAALTER THAN EPSENDON

C IS NOT ALLOWED TO BE STAALTER THAN EPSENDON

C IS NOT ALLOWED TO STEP HALVING ......

120 ERROLD-1.002C

NI-N-1

HCGA-AJ/N1

HCGA-HM4-BAJ/N1

HCGA-AJ/N1

HCGA-AJ/N2

III-1

200 X(I)=A-AI/N4

III-1

200 X(I)=A-AI/N4

III-1

200 X(I)=A-AI/N4

III-1

200 X(I)=AAI/N4

C III-0

C C IIIIII III-1

200 X(I)=ARPNM

300 IS INT-0

REWTON ITERATION STARTS ......

405 INNT-0

REWTON ITERATION STARTS ......
```

ARBITRARILY) TC C.8. IF CL*ERRCLU & ERRNEL ME MALVE « THE STEP. CACH TIME THAT ULTERRLUG & ERRNEW CL*CRULDO ME SET CI TC G.\$-CL, HTWA SCTUDALY ALLUHNG THIS T: HA-PPEN A MAXIMUM CF THREE TIMES, BEFORE THE MRRE SIRICI TEST WITH GLEERRORUG TAKES OVER COMPLETELY. ERRCLD IS THE ERROR ESTIMATE FOR THE LAST CCHRECTION BUT CCHRECTION. C C C C ί C C C 255C ERRCLD=ERRAEN EFSDAX1(EPSPAC,.LDU+H*+2*ERROLD) GU TG 405 C C..... CR HALVE THE STEP SIZE C 26CC IF(2*N-1.LE.NNAX)GU TC 2625 JERRCR=2 RETURN с с**<<<....** TOO MANY GRID PEINTS 2625 N=2+N-1 PPN=M+N C C C IF NEWTON DIVERGED WE START AGAIN WITH NUME C IFEOIVNEWIGG TC 40 C IFEOIVNEWIGG TC 40 C NCW WE DECIDE THE LEVEL CF CORRECTION ON THE NEW WRIG C WE ASSUME THAT THE LAST ESTIMATED LARGA (PRESLNTLY IN T ERACLD WILL BE PRESERVED AFTER INTERPLAITING, AND C THEREFURE WE LOCATE THE FIRST INDEX I FOR WHICH C CC(IIX-ERROLD, WHERE CC(II) IS THE PREDICTED ERAUR FUR C CC(IIX-ERROLD, WHERE CC(II) IS THE PREDICTED ERAUR FUR C C CORRECTION ON THE NEW GRID. с с с с с с COMPUTATION OF FIRST APPROXIMATION FOR Y ON NEW GAID BY MEANS OF UZOCGS WILL GIVE CHORE OF INTERPLATION 12*MU23, where nu is the last succesfull currection performed on the coarser grid.

2806	NC2=(N+1)/2	
	MPC2=M+NC2	
	DD 2960 1=1, MPO2	
2400	KES(I)=Y(I)	
	CALL HIDDECS (MUINT D & NODI N DE M CM (CODER)	
	DC 3100 Tel AC31	
	KI=(1-1)+M	
	K12=2*K1	
	DC 3160 L=1,#	
	Y(KI2+L)=RES(KI+L)	
3100	Y(KI2+H+L)=SK(KI+L)	
	DC 3200 L=1,M	
3200	T(MPN-M+L)=KES(MPC2-M+L)	
c	START ON NEW COLIC	
C		
	SUBJECTIVE SYSTEMEN, N.Y.Y.N. MEED DIS. AS DO 1000	
	SCONCOLANCE STREAMENEMENEMENEMEDIALUDERCOMPLEMENEME	
	IMPLICIT REAL#R(A-b,G-Z)	
	IMPLICIT REAL+8(A-H,C-Z) CIMENSION X(1).V(1).UU(1).RES(1)	
C****	HPLICIT REAL+8(A-H,G-Z) CIMENSION X(1),Y(1),UU(1),RES(1)	
C**** C	IMPLICIT REAL+8(A-H,G-Z) CIMENSION X(1),Y(1),UU(1),RES(1)	* \ <i>u</i>
C**** C C	IMPLICIT REAL=0(A-h,G-Z) CINENSION X(1),Y(1),U(1),RES(1) **** SCLUTICN GF LINEAR SYSTEM ***	91 17 17
C**** C C C	IMPLICIT REAL+0(a-h,G-Z) Cimension X(1),Y(1),UU(1),RES(1) *** Sclution of Linear System ***	9 V 17 14 14
C**** C C C C****	IMPLICIT REAL#0(A-h,G-Z) CIMENSION XIIJ,Y(I) UU(I),RES(I) *** Sclutign of Linear System ***	३ ६ <i>३३</i> ब
C**** C C C C C C C C C C C C C C C C C	IMPLICIT REAL-0(A-H,G-Z) CIMENSION X(1),Y(1),UU(1),RESS(1) *** Sclution of Linear System ***	2010 2010 2010 2010 2010 2010 2010 2010
C**** C C C C C C C C C C C C C C C C C	IMPLICIT REAL=8(A-h,G-2) LTMENSION XXIJ,Y(I),UU(I),RES(I) *** SCLUTIGN GF LINEAR SYSTEM *** LLUMING ARRAYS ARE WORKING AREAS. DIMENSIONS INVELVED - MUNACIONAL AND A DATA AN	きし ジ
C**** C C C C C **** C C F C C A R C	IMPLICIT REAL-8(A-H,G-Z) LIMENSION X(1),Y(1),UU(1),RESS(1) *** ŚCLUTICN GF LINEAR SYSTEM *** LLUMING ARRAYS ARE WORKING AREAS. DINENSIONS INVCLVEG * HAXFIG - MAXFI = 11, MAXF2/21CC - NAZYMAXAGG. HAXFIGH XAF2/21CC -	きし ジ マ 本 た 3 × 5 ま
C**** C C C C C C F C C C C C C C C C C	IMPLICIT REAL=8(A-H,G-Z) ETHENSION XXIJ,Y(I),UU(I),RES(I) *** SCLUTIGN GF LINEAR SYSTEM *** LLUMING ARRAYS ARE WORKING AREAS. DIMENSIONS INVOLVEG = MMAXTED , MMAXT= 1 1, MMAXTe2=100, NMAXTMMAX=65G, MMAX*(MMAX+1)=110	र अब्ब स. म. म. म.
C**** C C C C C C F C C C C C C C	IMPLICIT REAL=8(A-H,G-Z) LIMENSION X(1),Y(1),UU(1),RES(1) *** ŚCLUŢICN GF LINEAR SYSTEM *** LLUMING ARRAYS ARE WORKING AREAS. DIMENSIONS INVCLVEG E : HMAX=1G , MMAX=1 = 11 , MMAX=32=10C , MMAX=MAX=65G, MMAX=(MMAX=1)=11 GIMENSION T(110),U(10,S(12,10,1)=1)	а 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C**** C C C C C C C F C C C C C C C C	IMPLICIT REAL=8(A-H,G-Z) LIMENSION X(I),Y(I),UU(I),RESS(I) 	1. U V 平衡化 学生 奉献 疗
C**** C C C C C C F C C C C C C C	IMPLICIT REAL=8(A-H,G-Z) LIMENSION X(1),Y(1),UU(1),RSS(1) *** ŚCLUŢICN GF LINEAR SYSTEM *** LLUMING ARRAYS ARE WORKING AMEAS. DIMENSIONS INVCLVEČ * HMAX=1G , MMAX=1 = 11 , MMAX=92=10C , MMAX=MAX=65G, MMAX=(MMAX=1)=112 CIMENSION T(110),U(10,S(12),10,M(10,11),R(100), * (650;11),AUX(10,11),AI(12,10),BI(12,10) CUGUEL PARCISICH JAB(10,10)	3 いゆ ゆ か の ゆ よ の の よ の の の
C**** C C C C C C F C C C C C	IMPLICIT REAL=8(A-H,G-Z) EIMENSION X(1),Y(1),UU(1),RESS(1) ELUMING ARMAYS ARE WORKING AMEAS. DIMENSIONS INVOLVED E: MMAXIE , MMAXEI = 11, MMAXE02-110, NMAXEMMAX=650, MMAXE(MMAXE1)=110 GIMENSION T(110),UI(2),S(10;10),W(10,11),R(100), UG505(11),AUX(10;11),AI(10;10),BI(10;10) DCUBLE PRECISION JAB(10;10)	3 () V V V det a det a d t d t d t d t d t d t d t d t d t d t
C***** C C C C C C F C C C C C C C	IMPLICIT REAL=8(A-H,G-2) LIMENSION X(1),Y(1),UU(1),RES(1) *** ŚCLUŢICN GF LINEAR SYSTEM *** LLUMING ARRAYS ARE WORKING AMEAS. DIMENSIONS INVCLVEG E: HMAX=1G , MMAX=1 = 11 , MMAX=92=10C , MMAX=MAX=65G, MMAX=(MMAX=1)=11 CIMENSION T(110),U(10,S(10,10,11),H(10,11),R(100), V(650;11),AUX(10,11),AI(10,10),BI(11,10) DCUBLE PRECISION JAB(10,10)	१ - ४ - ४ - २ - २ - २ - २ - २ - २
C ***** C C C C FCI C FCI C ARI C C FCI C	IMPLICIT REAL=8(A-H,G-Z) CIMENSION X(1),Y(1),UU(1),RESS(1) 	9. <i>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</i>
C***** C C C C C C C C C C C C C C C C	IMPLICIT REAL=8(A-H,G-2) CIMENSION X(1),Y(1),U(1),RES(1) *** SCLUTIGN GF LINEAR SYSTEM *** LLUWING ARMAYS ARE WORKING AMEAS. DIMENSIONS INVOLVED = MMAXTED, MMAXTED = 11, MMAX**2=100, MMAXTED MMAXTED, MMAXTEMMAXTED GIMENSION T(116),U(16),S(10,10),VM(10,11),R(100), V(650;11),AUX(10,11),AI(10,10),R(100), DCUBLE PRECISION JAB(10,10)	яц и и и и и и и и и и и и и и и и и и и
C***** C C C C C C C C C C C C C C C C	IMPLICIT REAL-8(A-H,G-2) IMPLICIT REAL-8(A-H,G-2) IMPLICIT REAL-8(A-H,G-2) IMPLICIT REAL-8(A-H,G-2) IMPLICIT REAL-8(A-H,G-2) ILLOWING ARRAYS ARE WORKING AREAS. DIMENSIONS INVOLVED IMPLICIT AMARAYS ARE WORKING AREAS. DIMENSIONS INVOLVED IMPLICIT REAL-8(A-H,G-2) IMPLICIT	9. J J 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
C***** C C C C C C C C C C C C C C C C	IMPLICIT REAL-B(A-H, C-2) LIMENSION X(1),Y(1),UU(1),RES(1) *** ŚCLUŢICN GF LINEAR SYSTEM *** LLUMING ARRAYS ARE WORKING AMEAS. DIMENSIONS INVCLVEG * HMAX=1G , MMAX=1 = 11 , MMAX=02-10C , MMAX=MAX=65G, MMAX=(MMAX=0)=11 CIMENSION T(160,UI(0,5(10,16.),M(10,11),R(100), V(650,11),AUX(10,11),AI(10,10),BI(1.,10) DCUBLE PRECISION JAB(10,10) SULVES THE 2+2 BLCCK SYSTEM	9. J J J J J J J J J J J J J J J J J J J
C + + + + + + + + + + + + + + + + + + +	IMPLICIT REAL-8(A-H,G-2) CIMENSION X(1),Y(1),UU(1),RESS(1) *** ŚCLUȚICN GF LINEAR SYSTEM *** LLUMING ARRAYS ARE MORKING AREAS. DIMENSIONS INVCLVEG E: MNAXEG , MMAXEI = 11, MMAXe92-10, , MNAXEMMAX-656, MNAXE(MMAXE1)=11, GIMENSION T(110),U(10),S(10,10),VM(10,11),K(100), VG50,113,VAX(10,11),A(10,10),B(11),1(), DUBLE PRECISION JAB(10,10) CUUBLE PRECISION JAB(10,10) SULVES THE 2+2 BLCCK SYSTEM A B X 0 90	3. / / / / / / / / / / / / / / / / / / /
C***** C C C C C C C C C C C C C C C C	IMPLICIT REAL-8(A-H, C-2) CIMENSION X(1),Y(1),UU(1),RES(1) *** ŚCLUTICN GF LINEAR SYSTEM *** LLUMING ARRAYS ARE WORKING AREAS. DIMENSIONS INVCLVEG HMAX-IC , MMAX+1 = 11 , MMAX+2-1CC , MMAX-MAX-65C, MMAX+IMAX+1)=11 CIMENSION T(10),UI(1),S(1)(1),J(1),H(1),R(1),U), SULVES THE 2+2 BLCCK SYSTEM A B A B A C A C A C A C A C A C A C A C	10. 月日日本 · · · · · · · · · · · · · · · · · ·
C***** C C C C C C C C C C C C C C C C	IMPLICIT REAL=8(A-H,G-Z) CIMENSION X(1),Y(1),UU(1),RES(1) *** ŚCLUȚICN GF LINEAR SYSTEM *** LLUMING ARRAYS ARE MORKING AREAS. DIMENSIONS INVCLVEŬ E: MNAXEIG , MMAXEI = 11 , MAX**2=100 , MNAXEMMAX=650, MNAXEI = 11, MAX**2=100 , MNAXEMMAX=650, MNAXEI(MNAXE1)=110 GIMENSION T(110),U(10),S(10,10),W(10,11),R(100), V650,11)AUX(10,11),AI(10,11),R(100), DCUBLE PRECISION JAB(10,10) GUMENSION T(110),U(10),S(10,10),BI(10,10), CUBLE PRECISION JAB(10,10) SULVES THE 2+2 BLCCK SYSTEM A B X0 SUL A C C C C C C C C C	а, и и и и и и и и и и и и и и и и и и и
C***** C C C C C C C C C C C C C C C C	IMPLICIT REAL=8(A-H,G-2) LIMENSION X(1),Y(1),UU(1),RES(1) *** ŚCLUTICN GF LINEAR SYSTEM *** LLUMING ARRAYS ARE WORKING AREAS. DIMENSIONS INVCLVEG * MMAX=1C - MMAX=1 = 11 , MMAX=2=1CC , MMAX=1C - MMAX=1 = 11 , MMAX=2=1CC , MMAX=MAX=65C, MMAX=MMAX=1]=11 CIMENSION T(10),UI(1),S(1)(5.
C***** C C C C C C C C C C C C C C C C	IMPLICIT REAL=8(A-H,G-Z) CIMENSION X(1),Y(1),UU(1),RES(1) *** ŚCLUTICN GF LINEAR SYSTEM *** LLUWING ARRAYS ARE MORKING AREAS. DIMENSIONS INVCLVEG E: MNAXIG , MNAXI = 11, MNAX=92-10, , MNAXEMMAX=650, MNAXI = 11, MAX=92-10, , USIGNI, U(10),U(10),S(10,10),W(10,11),R(10,1), DIMENSION T(110),U(10),S(10,10),U(10,11),R(10,1), USIGNI, U(650,11),AUX(10,11),AI(10,11),R(10,1), UGUBLE PRECISION JABIIC,10) SULVES THE 2+2 BLCCK SYSTEM I	5. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C***** C C C C C C C C C C C C C C C C	IMPLICIT REAL=8(A-H,G-2) LIMENSION X(1),Y(1),UU(1),RES(1) *** ŚCLUŢICN GF LINEAR SYSTEM *** LLUMING ARRAYS ARE WORKING AREAS. DIMENSIONS INVCLVEG T MMAX=1C - MMAX=1 = 11 , MMAX=2=1CC , MMAX=1 = 11 , MAX=MAX=65C, MMAX=1MAX=1MAX=2=1CC , IMAX=1C - MMAX=1 = 11 , MMAX=2=1CC , SULVES THE 10, JU(1),S(1),J(1),J(1),J(1),J(1),J(1),J(1),J(1),J	5. 9 9 9 9 9 9 9 9 9 9 9 9 9
C***** C C C C C C C C C C C C C C C C	IMPLICIT REAL=8(A-H,G-Z) CIMENSION X(1),Y(1),UU(1),RES(1) *** ŚCLUTICN GF LINEAR SYSTEM *** LLUWING ARRAYS ARE MORKING AREAS. DIMENSIONS INVCLVEG E: MNAXIG ARRAYS ARE MORKING AREAS. DIMENSIONS INVCLVEG E: MNAXIG ARRAYS ARE MORKING AREAS. DIMENSIONS INVCLVEG E: MNAXIG ARRAYS ARE MORKING AREAS. DIMENSIONS INVCLVEG USIGNSION T(110),U(10),S(10,10),W(10,11),R(100), ************************************	N. U V V V V V V V V V V V V V V V V V V

	CALL JACUB(X(L),U,JAB)	
	DO 60 I=1,M	
	DO 60 J=1,M	
	KI=(J-1)+++	
	R(KI)=-H2+JAB(I,J)	
	IF(1.EQ.J)K(KI)=K(KI)+1.DO	
00		
	DO 1200 (+1.W	
	K1=(1-1)##	
	DO 1200 I=1-M	
1200	$T(K_{1+1}) = -S(1,J)$	
	GO TO 1700	
С		٠
C	COMPUTATION OF (C* - S.V*)	*
C		*
1300	DO 1500 K1=1,M1	
1400	SIM#SIM#S([])#VM(].K])	
1500	T((K1-1)+H+I)=SUM	
	DO 1600 I=1.M	
1600	T(M2+1)=T(M2+1)+RES((L-1)+M+1)	
1700	CALL DGELG (T,R,M,M1,1.D-7,IER)	
1750	CALL DARRAY (1, M, M1, 10, 11, T, VM)	
	DO 1800 J=1,M1	
	DO 1800 1=1,H	
1 0 0 0	V////_1******	
1800	V((L-1)*M+I,J)=VM(I,J)	
1800 C C	V((L-1)*#+I,J)=VH(I,J) *** END OF RECURSION ***	*
1800 C C C	V((L-1)*H+I,J)≠VH(I,J) *** END OF RECURSION ***	*
1800 C C C	V((L-1)+H+I,J)=VH(I,J) +++ END OF RECURSION +++ DO 2000 J=1,H1	* * *
1800 C C C	V((L-1)*#+1,J)=V#(L,J) *** END OF RECURSION *** DO 2000 J=1,M1 DO 2000 I=1,M	* *
1800 C C	V((L-1)+H+1,J)=VH(I,J)	•
1800 C C C	V((L-1)+H+T,J)=VH(L,J) **** END OF RECURSION *** D0 2000 J=1.H1 D0 2000 I=1.H1 SUM=0.00	•
1800 C C C C C	V((L-1)+H+I,J)=VH(I,J) *** END OF RECURSION *** DO 2000 J=1+H1 DO 2000 I=1.H SUN=0.D0 PRODUCTS 5.V AND 5.W	* * *
1800 C C C C C C	V((L-1)+H+I,J)=VH(I,J) *** END OF RECURSION *** D0 2000 J=1.H1 D0 2000 [=1.H4 SUH=0.00 PRODUCTS 8.V AND 8.W D1 1900 K=1.H	* * *
1800 C C C C C C C	V((L-1)+H+I,J)=VH(I,J) *** END OF RECURSION *** DO 2000 J=1,H1 SUH=0.00 PRODUCTS B.V AND B.W DU 1000 K=1,H SUH=SUH=B(I,K)+VH(K,J)	* *
1800 C C C C C C 1900 2000	V((L-1)+H+1,J)=VH(L,J) *** END OF RECURSION *** D0 2000 J=1,H1 D0 2000 J=1,H SUH=0,00 PRODUCTS B.V AND B.W DU 1900 K=1,H SUH=SUH+BL(1,K)+VH(K,J) AUX(1,J)=SUH	* * *
1800 C C C C C C C 1900 C	V((L-1)+H+I,J)=VH(I,J) •** END OF RECURSION *** DO 2000 J=1,H1 SUH=0.D0 PRODUCTS B.V AND B.W DU 1900 K=1,H SUH=SUH=E(1,K)*VH(K,J) AUX(I,J)=SUM	* * *
1800 C C C C C C 1900 2000 C C	V((L-1)*H+1,J)=VH(L,J) *** END OF RECURSION *** D0 2000 J=1,H1 D0 2000 i=1,H1 SUH=0.00 PRODUCTS B.V AND B.W DU 1900 K=1,H SUH=SUH=B1(1,K)*VH(K,J) AUX(1,J)=SUH (A - B.V)	* * *
1800 C C C C C C C C C C C C C C C C C C	V((L-1)*H+I,J)=VH(I,J) *** END OF RECURSION *** DO 2000 J=1;H1 SUH=0.00 PRODUCTS U.V AND B_W DU 1900 K=1;H SUH=SUH=SU(;K)*VH(K,J) AUX(I,J)=SUH (A - B.V)	* * * * *
1800 C C C C C C C C C C C C C C C C C C	V((L-1)+H+I,J)=VH(I,J) *** END OF RECURSION *** D0 2000 J=1+H1 SUM=0.D0 PRODUCTS B.V AND B.W D0 1900 K=1+H SUM=SUM=B(I,K)+VH(K,J) AUX(I,J)=SUM (A - B.V) D0 2100 J=1+H	***
1800 C C C C C C C C C C C C C C C C C C	V((L-1)+H+I,J)=VH(I,J) *** END OF RECURSION *** D0 2000 J=1+H1 SUH=0.00 PRODUCTS B.V AND B.W D0 1900 K=1,H SUH=SUH=SUH=SUH AUX(I,J)=SUH (A = B.V) D0 2100 J=1+H K1=(J=1)+H K1=(J=1)+H N = H	* * * * *
1800 C C C C C C C C C C C C C C C C C C	V((L-1)+H+I,J)=VH(I,J) *** END OF RECURSION *** DO 2000 J=1,H1 SUM=0.00 PRODUCTS B.V AND B.W DU 1900 K=1,H SUM=SUM=BL(I,K)*VH(K,J) AUX(I,J)=SUM (A - B.V) DO 2100 J=1,H KL=(J-1)+H DU 2100 J=1,H KL=(J-1)+H	* * * *
1800 C C C C C C C C C C C C C C C C C C	V((L-1)+H+I,J)=VH(I,J) *** END OF RECURSION *** D0 2000 J=I,H SUM=0,00 PRODUCTS U.V AND B_W D0 1900 K=1,H SUM=SUM+01(1,K)+VH(K,J) AUX(1,J)=SUM (A - B_V) D0 2100 J=1,H K1=(J-1)=H D0 2100 J=1,H K1=(J-1)=H D0 2100 J=1,H K1=(J-1)=H	* * *
1800 C C C C C C C C C C C C C C C C C C	V((L-1)+H+I,J)=VH(I,J) •** END OF RECURSION *** DO 2000 J=1,H1 SUH=0.00 PRODUCTS B.V AND B.W DU 1900 K=1,H SUH=SUH=SUH (A - B.V) DD 2100 J=1,H KL=(J-1)+H DU 2100 J=1,H KL=(J-1)+H DU 2100 J=1,H SUH=SUH=SUH SUH=SUH=SUH SUH=SUH=SUH SUH=SUH=SUH SUH=SUH=SUH SUH=SUH=SUH SUH=SUH=SUH SUH=SUH=SUH SUH=SUH SUH=SUH SUH=SUH SUH=SUH SUH=SUH SUH=SUH SUH=SUH SUH=SUH SUH=SUH SUH=SUH SUH=SUH SUH=SUH SUH=SUH SUH=SUH SUH SUH=SUH SUH SUH=SUH SUH SUH SUH=SUH SUH SUH SUH=SUH SUH SUH=SUH SUH SUH SUH SUH SUH SUH SUH	* * * *
1800 C C C C C C C C C C C C C C C C C C	V((L-1)+H+1,J)=VH(1,J) *** END OF RECURSION *** D0 2000 J=1+H SUM=0.00 PRODUCTS 8.V AND 8.W D0 1900 K=1.H SUM=SUM=BI(1,K)=VH(K,J) AUX(1,J)=SUM (A - 8.V) D0 2100 J=1.H K1=(J-1)+H R(K1=(J-1)+H R(K1=)=A1(1,J)-AUX(1,J) D0 2200 I=1.H UU(1)=RES(1)-AUX(1,H1)	* * * * *
1800 C C C C C C C C C C C C C C C C C C	V((L-1)*H+I,J)=VH(I,J) *** END OF RECURSION *** DO 2000 J=1,H1 SUH=0.00 PRODUCTS B.V AND B.W DU 1900 K=1,H SUH=SUH=SUH (A - 8.V) DD 2100 J=1,H K1=(J-1)*H DU 2100 J=1,H K1=(J-1)*H SUU (J)=KS(I)-AUX(I,J) DU 2200 J=1,H SOLUTION OF LINEAR SYSTEM	* * *
1800 C C C C C C C C C C C C C	V((L-1)+H+1,J)=VH(1,J) *** END OF RECURSION *** D0 2000 J=1+H1 SUM=0.00 PRODUCTS 8.V AND 8.W D0 1900 K=1.H SUM=SUM=BI(1,K)=VH(K,J) AUX(1,J)=SUM (A - 8.V) D0 2100 J=1.H K1=(J-1)+H K1=(J-1)+H R(K1=J-1)+H C1 = 0 J=1.H R(K1=J-1)+H SUM=SUM=SUM D1 2100 J=1.H R(K1=J-1)+H SUM=SUM SUM=SUM SUM=SUM SUM=SUM SUM=SUM SUM SUM SUM SUM SUM SUM SUM	* * * * *
1800 C C C C C C C C C C C C C	V((L-1)+H+I,J)=VH(I,J) *** END OF RECURSION *** DO 2000 J=1+H SUH=0.00 PRODUCTS U.V AND B.W DU 1900 K-1,H SUH=0.00 DU 1900 K-1,H SUH=SUH=BL(I,K)*VH(K,J) AUX(I,J)=SUH (A - B.V) DO 2100 J=1+H KI=(J-1)+R DU 2100 J=1+H KI=(J-1)+R DU 2100 J=1+H SOLUTION OF LINEAR SYSTEM (A - B.V) X0 = (80 - B.W) AND CUMPUTATION OF X	* * * *

```
DU 1 1-1,N

1 C(1)-B6(1)

DU 1 1-1,N

1 AIF(1)-1-NP-0.5D0

2 NWH-1

DD 6 1-1,NN

LL-N-1

DD 6 1-1,NN

C 6 J-1,LL

K-N-j+1

6 C(K)-C(K)-ALF(1)*C(K-1)

DD 6 J-1,LL

K-N-1

C (J)-C(J)-ALF(1)*C(K-1)

DD 6 J-1,N

C(J)-C(J)-C(J)*KIN

JNL-J-1

8 C(JNL)-C(J)KKIN

C(J)-C(J)-KKIN

C(J)-C(J)-KKIN

END

C------

C DRIVER PRUGRAM FOR PROBLEMS 1 TO 5

C SEE REFERENCE IN CUMMENTS TO SUBMOUTINE SYSSOL

IMPLICIT REAL*G(A-M, O-2)

EXTERNAL FF1,JACOB1

EXTERNAL FF1,JACOB2

EXTERNAL FF3,JACOB3

EXTERNAL FF3,JACOB3

C(JNN) /25/ ALGOB5

C(JNNN) /25/
```

```
Al[1,J]=0.D0
1000 #l1[1,J]=0.D0
Al[1,I]=1.D0
CALL SYSSOL(H,H,A,B,ALPHA,A1,B1,TOL,DELEPS,X,Y,ABT,FF1,JACU81,
-JERROR]
GU TO 10
MEPHA(1)=0.D0
ALPHA(1)=0.D0
ALPHA(1)=0.D0
ALPHA(1)=0.D0
ALPHA(1)=0.D0
ALPHA(1)=0.D0
ALPHA(1)=0.D0
ALPHA(1)=0.D0
ALPHA(1)=0.D0
AL1,J]=0.D0
CALL SYSSOL(H,H,A,B,ALPHA,A1,B1,TOL,DELEPS,X,Y,ABT,FF2,JAC0B2,
-JERROR]
GO TO 10
3 H=2
A=0.D0
B=1.D0
DO 3000 1=1.2
ALPHA(1)=0.D0
AL1,J]=0.D0
B=1.00
DO 3000 1=1.2
ALPHA(1)=0.D0
AL1,J]=0.D0
ALPHA(1)=0.D0
AL1,J]=0.D0
B=1.00
DO 3000 1=1.2
ALPHA(1)=0.D0
AL1,J]=0.D0
B=1.00
CALL SYSSOL(H,H,A,B,ALPHA,A1,B1,TOL,DELEPS,X,Y,ABT,FF3,JAC0B3,
+JERROR]
GG TO 10
AL[1,J]=0.D0
AL[1,J]=0.D
```

```
B=10_D0

D0 5000 l=1.4

A PPA(1)=0.00

D1 5000 J=1.4

A(1)=1=0.00

A1(1+1)=0.00

A1(1+1)=0.00
```

DIRENSION YX(1) JAB(1,1)=0.00 JAB(2,1)=2.D00YX(1)*YX(2)**.D0 JAB(2,2)=1.00-YX(1)**2 RETURN END SUBRUUTINE FF2(X,Y,N,FF) IMPLCIT KEA:99 (A-H.0-2) DIRESION X(1),Y(1),FF(1) P1=3.14157263539979300 D01=2.200*P1**2 D01=2.200**2 D1=2.200**2 D1=

```
с
с
с
                                                             UNSYMMETRIC APPROXIMATION LEFT BOUNDARY
               C
C
C
                                                           CENTER RANGE
                                                           CALL COEGEN(KK1,KH1D,C,A)

NF=N=1-KK1+KH1D

D) 40 1=KH1D,NF

I1=1-KH1D

00 39 1=1-H

Acuma-C

Acuma-Colar(1)+Y((1+J-1)+N+L)

IT=(1-1)+N+L

S(1T)=Acum

Continue
                    25
                    38
                    39
40
с
с
с
                                         RIGHT BUUNDARY

KNIDPI-KNIDDI

D0 50 I-KNIDPI,KK

CALL CDEGENIKK1,I.C.A)

II-N-KK

OU 49 L-1.H

ACUM-C.

D0 48 J-1.KKI

II-L.H

ACUM-C.

D0 48 J-1.KKI

ACUM-C.

D0 48 J-1.KKI

ACUM-C.

D0 48 J-1.KKI

ACUM-C.

D1 48 J-1.KKI

ACUM-C.

A
                                                             RIGHT BOUNDARY
                    48
                    49
50
          100
0000000
```