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A Variable Order Finite Difference Method 
for Nonlinear Multipoint Boundary Value Problems 

By M. Lentini and V. Pereyra 

Abstract. An adaptive finite difference method for first order nonlinear systems 
of ordinary differential equations subject to multipoint nonlinear boundary conditions 

is presented. The method is based on a discretization studied earlier by H. B. Keller. 

Variable order is provided through deferred corrections, while a built-in natural 

asymptotic estimator is used to automatically refine the mesh in order to achieve a 

required tolerance. Extensive numerical experimentation and a FORTRAN program 
are included. 

1. Introduction. In this paper, we intend to show how a finite difference tech- 
nique can be developed to produce high order approximations to the solution of mul- 
tipoint, nonlinear boundary value problems for first order systems of equations. 

We shall present extensive numerical evidence and comparisons with results pub- 
lished in the current literature showing that the method is extremely accurate and that 
it performs very efficiently. 

Moderate accuracy can also be obtained economically in terms of time and 
storage by working on very coarse meshes. All our results have been obtained with a 
general purpose program, whose structure can be (and has been) employed in other 
applications (Pereyra [20] ). 

Following Keller [11] we consider the nonlinear first order system 

(1 .la) y'(t) - f(t, y(t))=, a t b, 

subject to the multipoint boundary conditions: 

(I. Ib) gZ('r ), I **y(T)) = 0, a < r 1 < T 2 < < rN < b 

The vector functions y(t), f(t, y), and g will take values in R'. Considering the 
nonuniform net {ft}: I 
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982 M. LENTINI AND V. PEREYRA 

(1.2) ~~to =a, t. = tj. + hip I S< < Jo ti = b, 
(1.2) 0 JJ , 1j?, tb 

h maxh, {r} C {tj b 

the simple finite difference scheme 

(1.3a) Nhu. - (u1 - u_1) - ?[f(t._ 1'_u ) +ft., u)] = 0, /= 1, , X 
I 

(1.3b) g(u. *. *,u. )=0, 

will produce 0(h2) accurate discrete approximations under mild conditions which 
will be spelled out in Section 2. An asymptotic expansion in even powers of h for 
the global discretization error u1 - y(ti) can be shown to exist, and this knowledge 
justifies the use of deferred corrections which will increment the order of the method 
in two units per correction, working always on the same basic mesh. 

The adaptive scheme of Section 4 is designed so that the highest order method, 
compatible with the current mesh and with increasing returns in accuracy, is always 
used. The main tool employed to decide which path to follow in the program logical 
tree is the very natural and effective asymptotic error estimator described in Section 3. 

By reduction to first order systems in the usual way, systems of higher order 
equations can be treated. In this respect, we remark that, in sharp contrast to other high 
order methods, not only the unknown function but all its derivatives up to one unit less 
than the order of the equation are approximated with the same asymptotic order. 

From the current literature, we have chosen a set of representative problems used 
to test variational spline methods, shooting and parallel shooting, and a finite differ- 
ence technique similar to (1.3), but where high order is achieved via Richardson extra- 
polation. 

Numerical results obtained with our technique are presented in Section 5. In 
each case, we give pointers to the papers in which the test has been used before, and 
in a few relevant cases we compare different numerical results. Due to the fact that 
most numerical tests in this area are published with little detail concerning implemen- 
tation, computer times, and so on, it is hard to make any final judgement about the 
relative merits of the different techniques. The ultimate comparison will be that given 
by the user which will require: ease of use, applicability or adaptability to its particular 
problem, and overall: economy in computer cost and reliability. 

Our program (which is appended) has been developed with these requirements 
in mind, and we have tried to achieve the quality and high standards of the general 
purpose software currently available for initial value problems. 

In this first stage, we present a version which is not as general as the one described 
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theoretically. We consider only linear two-point boundary conditions of the form 
Ay(a) + By(b) = a and uniform meshes. 

However, we have used (Section 6) a variation of the program (not presented 
here) which handles a jump discontinuity. It is fairly clear that a general program can 
be written with a moderate amount of additional work. We are really waiting to develop 
an effective automatic procedure for choosing nonuniform meshes before undertaking 
a more general program. 

2. Keller's Results for the Basic Method [8], [9], [11]. The main theoretical 
support for our method is provided by the thorough analysis that H. B. Keller has made 
of the second order scheme (1.3), and by the general theory of deferred corrections 
developed by the second author of this paper [16]. For completeness, we shall now 
describe the minimum material necessary to present our results. 

A solution y*(t) of (1.1) is said to be isolated if the linearized problem (around 
y*) has a unique solution. We assume that (1.1) has an isolated solution y*(t). Then, 
for sufficiently small ho and all h ? ho, we have: 

(i) The difference equation (1.3) has a unique solution in a neighborhood of 

{y*(ti)I, which can be computed by Newton's method. The convergence is quadratic 
for appropriate initial values. 

(ii) max,1Iuj1-y*(t1)11 = 0(h2). 

(iii) Uj-y *(tj) = m l1 h2 vev(ti) + O(h2 m + 2), j = . , J. 
(iv) Writing (1.3) in vector form 

Dh ( = ?,with U = (U , . * * uJ)T, and 

b 0Nh U .1 Dh (U) [ hNu 

L NhUJ J 

we have the stability condition 

(2.1) IIU - Vil CilkDh(U) - (Dh(V)II' C independent of h, 

(which can be readily obtained from (3.4a) of [11]). 
Most of these results can be extended to the important case in which the data 

functions f and g are only piecewise smooth, with jump discontinuities allowed at 
the boundary points { r1}. 
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We shall also need the Fredchet derivative (Jacobian matrix) of the operator 

('h(U). This matrix has the following block structure: 

GO G . * GJ 

S1 R1 0 ... 0 01 
S? OI 0\ 

(2.2) V (U)= \ 

. I \ \R. 

S I 

where all the submatrices are of size n x n, and 

Go = WMaN~,* X= O,..** , J. 
I I~~~~~~~~~~~~~~ Is/- hI+tl] R1=hI-2f, jl- ,J 

[f]St = (af5IaUtW), U,). 

3. Deferred Corrections and Asymptotic Error Estimates. By using Taylor 
series we can easily obtain an asymptotic expansion for the local discretization error 

th&) (-hWy)- In fact, 

V h.v 
(3.1) rh )(t. 1 +-= p L + 1 2 

+ 0(h2L+2), 

where 

f(2 v) f(2 v)(t. + 1/2hiz, y*(t. + 1/2_ h 
1- 1/2 f-i I, ?1 ?h)). 

Let Fk(y*) be the segment of the expansion (3.1) containing its first k terms. 

For each I < j < J, let ij be the only index for which 

(3.2) ti < tj + ? hj.< ri.+ j- 

Then we define Sk as 

2kc 

(3.3) sk&*)(t. 1 ??h1)- Ew;.f;?1i 
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where the p1 are chosen so that 

(3.4) Ti, < tjpj+i < rij+ l 

is satisfied. The weights wii are chosen so that 

(3.5) Sk@y*) = 'rk@*) + 0(h2k+2) 

at each tj_ + 112hi, j = l,, J. 

Clearly, (3.4) imposes a condition on the mesh: 
CM: There must be at least (2k - 1) mesh points between boundary points. 
Though it is not strictly necessary to require (3.4) in the case we are consider- 

ing at present, we prefer to assume (3.4) to hold since this will be essential in the 

case of piecewise smooth data, where we must avoid straddling a singularity in order 

to obtain the desired accuracy (cf. Section 6). 
Once CM is assured, (3.3) can always be constructed since it is simply a numer- 

ical differentiation formula applied to each component of the (perhaps piecewise 

smooth) vector function f. With a small modification, the correction generator of 

[19] can be used for this purpose (cf. also [16], [17]). 
From [16], [18], it follows that, if y(k1-) is an O(h2k) accurate discrete 

solution, then (3.5) is satisfied if y* is replaced by y(k-1) and that, for k > 1, 

the solution A(k- 1) of the linear problem 

(3.6) D,(y~k )),A = S 1(y(k- 2)) -Sk(yk- 1) 

is an asymptotic error estimator for ek 1 Yk- 1 - fhyh where So 0, and 

Oh projects y*(x) on the mesh functions. In fact, we shall have 

(3.7) A k-1= ek-1 + o(h2k+2). 

The successively more accurate mesh solutions y(k) are obtained by deferred cor- 

rections, i.e., by solving for yOk) the nonlinear problems: 

(3.8) (Dh (y = Sh (y(k -1)) k = 1,* . 

These nonlinear problems can be solved by Newton's method, i.e., by the iteration: 

(3.9) 
h 

- 
= Y 

h 
h(y' 

starting from an appropriate Y0. Naturally, each step is performed by solving a 
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linear system entirely similar to (3.6). Because of the special structure of the sparse 

matrix V*, there are various direct methods which can be employed. In the case of 

separated two-point boundary conditions, it is advisable to use the band or block 
tridiagonal methods of Varah [25] and Keller [11]. 

Clearly, the difficulties in the asymptotic theory observed before in the simple 

two-point boundary value problem [19], because of the use of different differentia- 

tion formulas at different points, are also present in this case at each subinterval. 
However, as in the simpler problem, we hope to show with our numerical experimen- 

tation that, notwithstanding these theoretical difficulties, this is a very effective 

technique. 
Solution of the Linear Systems of Equations. We shall describe briefly the 

direct solution of block systems of the form (2.2). We have included in (2.2) an 

extra subdivision in order to treat the 2 x 2 "super-block" matrix: 

(3.10) = [ 
C } n V 
n n*. 

Considering the partitioned vectors 

x = x0 b = 1iol 

x.b 

the super-block system 

(3.11) [ j[?]4p?3 

is solved by elimination. More explicitly: 

(3.1 la) X0 = (A - BD- 1C)- 1(bo - BD- b), 

(3.1Tb) mi p (o taona 

The main part of the computation is the solution of the block-bidiagonal sys- 
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teams with the matrix D, corresponding to the computation of D- 1C, D- 1b. By 
putting C= [Clb], V= [Vlw], where V=D-1C, w=D-1b, we have that the 
system DV= C is solved by the recursion: 

(3.12) V. =R71(C -S.V= 1, * , 

where V0 0, and the VJ, C, correspond to the appropriate partitionings of V, C. 
Naturally, the matrices R, are not inverted, but, rather, a good Gaussian elimination 
code with pivoting is used to solve the corresponding matrix systems. This provides 
what Keller [11] calls partial pivoting. With V, (3.11) reduces to the solution of 
the linear system 

(3.13a) (A - BV)xo = (bo - Bw), 

(3.13b) x=w-Vx0. 

Observe that in most cases the block-vector B will be quite sparse since there 
will usually be many more grid points than boundary points. This should be taken 
into account in the computation. 

4. The Adaptive Method. In [19], a variable order algorithm based on results 
similar to those of Section 3 was developed for the two-point boundary value problem 
for second order equations. It was indicated there that the scheme had more general 
applications, as we shall proceed to show now (cf. [20] also). 

The problem we set ourselves to solve is the following: "Given a boundary value 
problem (1.1), a basic mesh Ah (containing the boundary points Tig i = 1, * * *, M9 
and a tolerance TOL, find an approximate solution Y* defined (at least) on Qh 
and satisfying 

(4.1) IIY* - 0hy*II < TOL." 

The basic mesh 7h is the region in which the user wants to know the solution 
(minimal description): 

(4.2) Qh = 
{tjTj=os....J 

We define the indices ii, by 

t. =r.i, i =1 , * * , N 
(4.3) ti 

a ni+d ii + 1, i 1, * - 1, 

and 
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77 = min v.. 

By 2h/2, we shall denote the refinement of ih obtained by including all the 
midpoints t1_1 + lhhi. Thus, J becomes 2J. 

Algorithm. Let k = 0. 
If r7 > 4, then we can compute S1 (cf. (3.1) and (3.5)). In that case, on 

2h, we solve Fh(Y) = 0 for Y), and also solve 4V(Y(0))A = - SJ(Y()) for 
Ai?. Since 11A)11 is an error estimate for 11Y(?) - Ohy*ll, we check if HIAM?I11 < 
TOL and, if this condition is satisfied, we exit successfully. 

If q1 < 4, then the first step just described cannot be performed and we refine 
the mesh and try again. If OLDERROR 11YI) 11 > TOL, then we enter in the 
general correction loop: 

Correction loop: set k equal to k + 1; 
if rl < 2k + 2 then refine the mesh; 
otherwise solve for y(k) the nonlinear equation: 

h( = Sk(k 1)). 

Compute and save Sk+l(y(k)). 
Solve for A(k) the linear equation: 

( I~))A = Sk(y(k - 
1))-Sk+ (k)); 

if NEWERROR IA(k) 11 ? TOL, then exit successfully; 
otherwise if NEWERROR AC * OLDERROR (where 0 < C < 1) then 

set OLDERROR to NEWERROR and go to Correction loop; 
otherwise refine the mesh end. 

The strategy behind this algorithm is that the highest order method compatible 
with the current mesh is always used, unless the level of diminishing returns is reached 
and no further improvement is obtained by increasing the order on the present mesh. 
This last decision corresponds to the condition NEWERROR < C * OLDERROR, 
where the constant C measures the minimum rate of improvement required of a 
correction in order to continue on the given mesh. This strategy is dictated by the 
accumulated experience on multiple applications that indicates that greater efficiency 
is achieved in this way than by refining the mesh prematurely. (Recall that the 
dimensionality of the problem increases when the mesh is refined.) 

Another important feature, especially for nonlinear problems, is the following. 
After the very first step on the basic mesh, where, usually, we will not have good 
initial values, we can count on accurate initial values for starting all the successive 
iterations. In fact, to solve the equations h,,(Y) = Sk(yk- 1)), we can use 
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as starting values y(k- 1) itself, while, upon refinement of the mesh, we can use the 
latest value of Y on the coarse mesh, plus values interpolated from them for the 
missing points in the new mesh. 

The error estimate NEWERROR is profitably used in two ways, aside from the 
one already mentioned above. After the first step of the process, we use it to set 
the level, at which the residual in the solution of the nonlinear equations, must be 
reduced, in the next step. When the grid is refined, the degree of interpolation used 
to produce initial values for the new grid points, and the level of correction at which 
the process will start, are also decided on the basis of information related to earlier 
estimates. When convergence of Newton's method cannot be achieved due to lack of 
information to start the process, one might be forced to resort to more elaborate 

techniques, as we exemplify in Section 7. 

5. Numerical Results. In this section, we shall report on a fairly extensive set 
of tests, mostly collected in the open literature. In all cases, we write the equations 
as first order systems, although in the references they might have been treated as high 
order equations. All results have been obtained on an IBM/360 model 50 computer 
working with long words (a 16 decimal digits), using the FORTRAN program SYSSOL 
listed in the Appendix. There are two user parameters that must be given to SYSSOL: 

TOL = user's desired accuracy (see 4.1) and N = number of points in the initial mesh. 
Problem 1. 

'1 =Y2) 

Y,2 = Y- sin t (1 + sin2 t), 

y1(0) =Y1(7r) = 0. 

Exact solution. y1(t) = sin t;y2(t) = cos t. 

In [19], an adaptive method for second order equations was developed using 
as a basic discretization the 0(h4) Milne-Numerov formula. Results obtained with 
SYSSOL are listed in Table 1. The user parameters were: TOL = 5 x 10- 15 

and N=9. 

TABLE 1 

Final estimated Final true Number of Final mesh 
error error corrections size 

SYSSOL 3.2, - 15 2.2, - 15 6 33 

[19] 7.0, - 17 2.8, - 15 3 33 
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We observe in Table 1 that very similar results are obtained with both methods, 
but, reflecting the fact that 4 orders are gained per correction, the method of [19] 
requires only half the number of corrections. Computer times are unfortunately non- 

comparable, since the results for [19] were obtained on an IBM/360 Model 91. How- 
ever, we believe that the technique of [19] should be preferred whenever it applies. 

As a matter of reference, the computer time on an IBM/360/50 for SYSSOL was 
13.12 sec. 

Problem 2. 

Y1 Y2, 

y' = 400(y1 + cos2 7Tt) + 27r2 cos 27rt, 

yM(O) =yl(l) = 0. 

Exact solution. 

y1(t) = e e20t + 1 e20t - Cos27rt, 

20+e-20 e 1+e20 

y2(t) 
20e-2 e2t _ 20 e-20t + 7r sin27rt. 2 1.+ e-20 1+e-20 

In Stber and Bulirsch [24, Chapter 2, ? 6] , this example is used to compare the 

following methods: 
(Ma) Simple shooting method (obviously, the example is designed to fail for this 

method, and so it does); 
(Mb) Multiple shooting of Bulirsch; 
(Mc) O(h2) finite difference method for second order equations; 
(Md) Variational method using cubic splines. 
We thank Professor Stber for making his results available to us before [24] was ready. 
In Table 2, we compare the maximum absolute errors of the various methods with 

those obtained by SYSSOL, with TOL = 5 x 10- 1 1, N= 65. 

TABLE 2 

Max. abs. error Comments 

Ma 1.3,-3 
Mb 5.0, - 12 20 intermediary points. 
Mc 5.6, - 6 210 mesh points. 
Md 1.8, - 6 100 subintervals. 

SYSSOL 9.9, - 12 65 mesh points; 7 corrections. 
21.74 sec. of computing time. 
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Problem 3. 

y1 Y2, 

1 y1 

Y2 = e 

y(0) =y(1) = 0. 

Exact solution. 

y (t) = - In 2 + 2 In [c8sec (2( 2) 

y2 (t) = c *tan (c - 1) 

where c satisfies c* sec c/4 = V2. To 16 significant figures, c = 1.33605 5694906108.... 
This problem has been solved by a variety of techniques in [2] , [5], [7], [11], [19 

[21]. In Table 3, we present some comparative figures. A description of the various 
methods follows (in some cases, we have chosen only the most accurate results): 

MI: Ritz-Galerkin with polynomial subspaces p(N) 

Basis: indefinite integrals of Legendre polynomials. 
Iterative method: Gauss-Seidel-Newton [2]. 

M2: Ritz-Galerkin with cubic Hermite subspaces H coupled with four-point 
Gaussian quadrature scheme [5],. 

M3: Ritz-Galerkin with smooth cubic splines Sp(D2, A(h), z) [7]. 
M4: Keller's method with Richardson's extrapolations, [11] . 
M5: 0(h 8), Milne-Numerov, linear deferred corrections [19] . 
M6: Milne-Numerov with successive extrapolations [19]. 
M7: Adaptive deferred corrections (SYSSOL). 
We report max. abs. error for each method. 

TABLE 3 

Method Error Comments 

M 1 5.03, - 8 Dimension of p(N) = 6. 
0 

M2 6.28, - 8 Dimension of H 2) = 24. 0 
M3 7.15, - 7 Dimension of S(2) = 16. 

p 
M4 1.09, - 11 Three extrapolations. Basic mesh, h = 1/3. 
M5 7.36,- 10 N= 8. 
M6 4.01, - 12 Two extrapolations. Basic mesh, h = 1/4. 
M7 5.35,-12 k=2. No =9. N final=17. 

Time on IBM 360/50: 4.1 seconds. 
M7 3.98,-15 k = 4. No = 17. N final = 33. 

Computer time: 8.76 seconds. 
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We observe that the only results with an accuracy comparable to SYSSOL are those 

obtained with successive extrapolations (a very near cousin!) but that, as usual, the ac- 

curate results correspond only to the coarsest mesh used (with 2 and 3 interior points 

respectively in M4 and M6). 
Problem 4. (Bending of a thin beam clamped at both ends.) 

Y1 j2' 

Y2 Y3' 

Y3 Y4, 

y= (t4 + 14t3 + 49t2 + 32t - 12)et, 

Y1(O) =Y2(0) =y1(l) =Y2(1) = 0. 

Exact solution. y(t) = t2(1 - t)2et. 
In [2], [5], this problem is solved by a variational method using smooth Hermite 

subspaces HM2)(7r) of piecewise cubic polynomials. 

In Table 4, we compare max. abs. errors for the solution and its first derivative. 

The value of k indicates the final number of correction terms. 

TABLE 4 

Max. abs. err-or Max. abs. error 
Method function derivative 

Ritz-Galerkin 
f(2) of dim. 46 1.70,-6 1.27,-4 

SYSSOL 
17 points 4.70, - 7 9.03, - 7 

k = 2 

SYSSOL 
33 points 1.82, - 14 9.65, - 15 

k = 6 

The computer time on an IBM 360/50 for the most accurate results was of 13.82 

sec., using 138 K.-bytes of main storage. 
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Problem 5. 

yl = 2, 

Y2 = (y 1 -Y3), 

Y3 =Y4, 

Y4 a(y3 y1), 

y1(O) =y4(O) =y2(S) = 0; Y4(S) =C 

with s1= 0,c= 10-3, a=f=2.5. 
Exact solution. 

C= r [xyr + t - y cosh(rt)/r + a sinh(rt)/rI, 

C 
= [I - ty sinh(rt) + cosh(rt)] 

Y3 = 2 [tp~/r + ot + ay cosh(rt)/r - f3 sinh(rt)/r] 

Y r + a-y sinh(rt) - f cosh(rt)J, 

where 

rN=V/ + i3 y= cosh(rs) + ) / sinh(rs). 

In [3], Falkenberg solves this problem by a method he calls "step wise inversion" 
which is related to the Godunov-Conte method. This is also a problem which is unstable 
for simple shooting. In Table 5 we show again max. abs. errors for the various compon- 
ents as obtained with Falkenberg's algorithm and with SYSSOL. 

TABLE 5 

max. abs. max. abs. max. abs. max. abs. Method error in error in error in error in 
Y1 Y2 Y3 Y4 

Falkenberg 
10 steps 10-8 10-9 10-8 10-9 

SYSSOL 
33 points 6 x 10-11 1.5 x 10-10 3.3 x 10-11 6.4 x 10- 

k = 7 
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Computer time on IBM 360/50 was 36.10 sec. for No = 9. 
Finally, in Table 6, we present the results of a fairly extensive set of tests, which 

shows the behavior of SYSSOL on the five problems of this section for different toler- 
ances and initial step sizes. 

TABLE 6 

Problem 1 2 

\NO 
TOL \ 5 9 17 33 65 5 9 17 33 65 

10-3 .96 .8[ 1.61 2.01 4.57 9.36 7.42 6.27 F7.1 8.51 
(9) 2 (17) (33) (65) (33) (33) (33) ( (65) 

10-6 3.27 3.21 1289 3.19 6.19 15.09 13.87 10.73 1Y0.69 13.39 
(17) (17) [(17j (33) (65) (33) (33) (33) [ (33) (65) 

l0-9 5.07 5.2 4.757 6.73 11.48 26.89 26.77 25.39 26.09 17.18 
_ (17) (17) L7 J) (33) (65) (65) (65) (65) (65) (6[ ) 

Problem 3 4 
N0 

TOL \ 5 9 17 33 65 5 9 17 33 65 

10-3 .56 F 
.73 1.41 4.90 3.16 S2.i1 3.22 6.40 13.11 

9) ([%9) (17) (33) (65) (9) [9? 1 (17) (33) (65) 
10-.6 1.38 1.03 1.26 2.81 6.45 6.65 6.24 6.57 9.86 18.98 

9) ((9) (17) (33) (65) (17) (17) (17) (33) (65) 
l0-9 2.61 2.57 [2.Sl 4.01 7.85 10.71 10.23 8.j83 14.56 18.68 

l______ (17) (17) m172 (33) (65) (17) (17) L7 (33) (65) 

Problem S 
N0 Time in seconds needed to reach the 

TOL \ 5 9 17 33 65 indicated TOLerances in Problems 1 

l0-3 2.22 1.73 [1.61| 3.37 7.23 to 5. The number in parentheses is 
(9) (9) (17 (33) (65) the final number of points in the 

106 18.(33) (33) (33) L6 13.(609 mesh. The boxes indicate the mini- 

l0 9 29.81 29.12 25.07 23. 26.35 mum time for fixed problem and tol- 
(33) (33) (33) L33 (65) erance. 

The tolerances chosen (values of TOL) could be described as low, medium and 
medium-high, while, in the individual results already given, we exemplified the results 
for high precision (on this computer). These results are important since they show that 
the algorithm is not geared exclusively towards high precision, which might be inade- 
quate in many present day applications, but also performs economically at "engineering 
precisions". 

We observe in Table 6 that for each problem and a given tolerance (horizontal 
lines), the final number of mesh points Nf is independent of the initial one No, until 
No >Nf, when they start coinciding. What is more important, the minimum time, for 
given problem and tolerance (marked by a box), is attained when No reaches Nf. We 
shall call the mesh with this number of points N(TOL): the optimal mesh for the problem 
(and tolerance). There is only one exception in the 15 cases shown: Problem 4, TOL = 
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10-6. However, we see that the difference in times falls in the area of uncertainty due 

to the multiprogramming environment (about 10%). Therefore, it would be quite im- 

portant, from the point of view of this algorithm, to be able to predict N(TOL) early 

in the game. 

Another point shown in this table is that underestimating N(TOL) is less costly 

than overestimating it. Very schematically, we can subsume the results of Table 6 in the 

following diagram, where we present the curves time/(minimum time) versus 

log2(N0 - 1) for two hypothetical, though typical, cases. 

time 
min. time 

2 

1.5 

N N~~~~~~0 l og2N 

1 2 3 4 5 

6. Piecewise Smooth Data. In [9], Keller develops, in all detail, the theory 

mentioned in Section 2, restricted to the linear case but allowing jump discontinuities 

in the function f(t, y(t)) A(t)y(t) + g(t). The only restriction is that those dis- 

continuities must be limited to occur on the set of boundary points. In Section 3, 

we introduced a limitation stronger than necessary in the way by which the correction 

operators Sk were calculated. This was done foreseeing the extension to the piece- 

wise smooth case. In fact, the only care we must exert in order that the whole theory 

(and practice) of deferred correction holds true in this case, is not to straddle dis- 

continuities in the calculation of the Sk. By working systematically on the smooth 

subintervals, all the necessary expansions are valid (cf. [9] ). 

The only small modifications that must be introduced in the general routine 

are due to the fact that, at discontinuity points, we must use the proper information. 
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For instance, let tji = ri be a discontinuity point of f(t, y(t)), and let fj7. fi be 
the respective one-sided limits. Then 

Nhui h (u.-u. 21 1 

and 

h j~+ h11(u1 -U. ) [f.+ ?f ] Nh Uji+l hj +1( Ii+1 ji 2 [i ji+i 

Similar care must be exerted in the implementation of formula (3.3) and in the 
computation of the Jacobian. However, the same code as for the smooth case can 

be used for computing the Sk at each subinterval [Ti, ?i+ 1 i.e., for (tQ- + 1/2h?), 
= ji + ji+ 1 

Problem 6. 

Y1 =Y 2, 

Y yt = y3 

16 

4t3- 
= ?21 

8 024t1 /x21/2, 
4 

48 1/2 < x 2 11 

Y1 (?) = Y2(O) = Y1 (1) = y2(l) =O. 

Exact solution. 

y (t) = t 8 t+16t,0 t612 

2(t - 1) 4+ 289(t - 1)3 +27 (t - 1)2, 1 /2 < t < 1. 

24t3 - 57t2 + 21 0 < t? 1/2, 
Y2(t) = 8 8 

(8(t - 1)3 + 57 (t -1)2 + 287 (t - 1), 1/ 2 < t < I1. 

8' 8 
12t2 - 57 t + 21 0 6 t 6 12 , 

Y3(t) =44 
24(t'- 1)2 + 57 (t- 1) + 27 1/2 < t < 1. 

24t-57/4, 0<t? 1/2, 
y4(t) = 48(t-1)?57/4, 1/2<t<I. 
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In [211, this discontinuous problem is solved by a variational method using cubic 
Hermite spaces H(2). In that paper, a comparison is made with a finite difference 
method, showing the dangers of a naive approach to the problem. In Table 7 we 
compare the variational method with our finite difference method. 

TABLE 7 

Method max. abs. error Comments 

Variational 1.25, - 5 Dimension of HM2) = 18 0 

Five-point 8.53, - 3 79 mesh points 
finite differences 

SYSSOL 4.43, -6 9 points 
1 correction 

SYSSOL 1.39, - 17 33 points 
5 corrections 

One of the main points made in [21], when comparing the variational method 
with the finite difference method, was that while the former method showed a per- 
fect asymptotic behavior, the latter failed to show even second order convergence, and 
computations on various meshes had a very erratic behavior. The reason for these 
results is apparent to us now: the 5-point finite difference method straddled the 

singularity at 1/2 for points near it, while the cubic Hermite method, being essen- 
tially a two-point method did not. That is the reason why our finite difference 
method is also impervious to the jump discontinuity. Our last piece of evidence is 
to show then that our method has the proper asymptotic behvaior, and we do that 
in Table 8. 

N is the number of mesh points, k is the correction number, and the number 
in parentheses after a correction column is the computed order of the method for 
that column. The theoretical order for correction k is O(h2k+2). 

TABLE 8 

N\k 0 1 2 3 

9 6.05,-3 - 4.43,-6 - - - - - 

17 1.53, - 3 (2.0) 2.75, - 7 (4.0) 1.08, - 9 (6.0) 4.22, - 12 - 

33 3.82, - 4 (2.0) 1.72, - 8 (4.0) 1.68, - 11 (6.0) 1.65, - 14 (8.0) 

65 9.56, - 5 (2.0) 1.07, - 9 (4.0) 2.62, - 13 (6.0) 6.94, - 17 (7.9) 

Problem 6 is linear and has a piecewise polynomial solution: a fairly favorable case. 
The following is a nonlinear problem with a nonpolynomial solution with dis- 

continuous second derivative. 
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Problem 7. 
Y1 =Y2, 

-{eY1!X3, 1 <x < 1.5, 

2 40, 1.5 <x?2, 

Y1() =O, Y2(2) 
= 2/3. 

Exact solution. 
in x, I1 Ax< 1.5, I1/x, I1 Ax< 1.5, 

y1(x)= 2 Y2(X) = 
3 x + In 1.5 - 1,1. < <2 2/3, 1.5 < x < 2. 

User parameters for this problem were No = 65, TOL = 5 x 10-15. With four cor- 

rections on this mesh and a total of eight Newton iterations the tolerance was met, 

using 18.07 sec. of computing time.* 
The results of this section were obtained with a more primitive (and modified) 

version of SYSSOL, and are reported only as a matter of reference. 

7. Use of a Continuation Method for Stubborn Problems. In [15], [22], [23], 
some more challenging problems appear. These are "horror" problems generally 
appearing in practical applications which have resisted the action of most methods. 
Some of them are impervious to the use of shooting methods, while others present 
difficulties in the convergence of the iterations used for the solution of the nonlinear 
equations that occur in the various methods. Difficulties with the simple shooting 
method have been avoided in many cases by resorting to the more sophisticated tech- 
nique of parallel shooting [8], [15], which is essentially a hybrid, combining shoot- 
ing with finite differences. As we have already shown in Problem 2, our algorithm 
can also overcome the difficulties originated by unstable or stiff systems. In the 
following problem, however, we found for the first time divergence in Newton's 
method, when starting from our usual crude values yi(ti) 0. Thus, we have been 
forced to employ a more sophisticated technique for solving the nonlinear equations. 

Problem 8. (A boundary layer problem.) 

Y1 =Y2' 

1} =y3, Y2 ?3' 

y3=- 1.55yy3 + 1y2 + 1 - + .2y 

Y4 =Y5, 

y' = - 1.55yly5 ? 1.1y2y4 + .2(y4 1), 

Y1(0) =Y2(0) =Y4(0) =Y2(3.5) = 0, y4(3.5) = 1. 

We acknowledge here the tele-debugging abilities of Professor H. B. Keller who dis- 

rovered an error in the Jacobian matrix in an earlier version, without ever seeing the program. 
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Exact solution. Unknown. 
In [6], Holt presents a numerical solution in graphic form obtained via an 

ad hoc finite difference method and reports difficulties obtaining initial values. In 

[15], Osborne uses parallel shooting with success depending again upon the initial 
values, but, unfortunately, no information is given about the computed solution. In 

[23], Roberts, Shipman and Ellis replace the system by 

0 1 0 0 0 

0 0 1 0 0 

(7.1) y40 0.2 0 0 ?jY? e0g(t 
A 

L 0 0 0.2 J 
Q- + e g(t, A) 

where y +?g f They use a continuation method [14] consisting of setting eV = 

e- 1 + e, v= 1, , = 0, and solving the intermediate problems by simple 
shooting until eV reaches the value 1, where the original problem is recovered. A 
table of the computed missing boundary values is offered, though no mention of 
their accuracy is made. In the intermediate problems, (it seems), ten iterations are 
performed, presumably each one of them costing the integration of an initial value 
problem. No indication of computer times are given. 

We have chosen to use a variation of this procedure in which only one Newton 
step is performed for each e>, since our aim is simply to provide initial values to 
start a successful iteration for eV = 1. This goal has been achieved and highly ac- 
curate results have been obtained as we show below. Again, the changes in the main 
program have been minimal; this is offered as an option in the final library subroutine. 

In Table 9, we list the calculated missing boundary conditions of Roberts et al., 
and those obtained with SYSSOL modified as indicated above. We used AC = .1. 
As usual, k is the correction number. N was 65. 

The computer time on an IBM 360/50 was 135.28 sec. 
The program SYSSOL given in the Appendix will perform continuation auto- 

matically as an option. The user has to embed his problem in a one parameter family 
of problems 

y' =f(t, y; C), 

such that, for e = 0, the problem is "simple", and, for e = 1, the original problem 
is recovered. This option is considered automatically whenever the parameter 
DELEPS e(0, 1). It is the responsibility of the user to have the appropriate sub- 
routine for calculating f(t, y; e) and its Jacobian. In this case, initial values for Y 

must also be given. 
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TABLE 9 

Method y3 (0) Y5 (?) y1 (3.5) Y3 (3.5) Y5 (3 . 5) 

[23] -0.97819707 0.64678660 -1.5308940 1.1744953 -0.31437074 

SYSSOL 

k=0 -0.97793385 0.64706375 -1.5300011 1.1731673 -0.31483749 

k=1 -0.97819829 0.64678677 -1.5308960 1.1745015 -0.31437128 

k=2 -0.97819758 0.64678682 -1.5308941 1.1744980 -0.31437042 

k=3 -0.97819757999' 0.64678682479' -1.5308940685 1.1744981003 -0.31437042497 

k=4 -0.97819757997 0.64678682478 -1.5308940684 1.1744981012 -0.31437042438 

We point out that our asymptotic error estimate indicates that the max. abs. 

error on all the components (for k = 4) is equal to 6.67 X 10 , tending to 

confirmn that all the figures shown in the last line of Table 9 are exact. 

8. Generalization of the Milne-Numerov Method to Even-Order Systems of 
Special Type. In this section we shall consider systems of the form: 

(8.1) y(2r) =f(t, y Y(2) ... y(2r-2)) 

with separable two-point boundary conditions. Such systems can always be reduced 
to larger second order systems with no first derivatives present. Thus, without loss 
of generality, we consider instead: 

(8.2) y - f(t, y) = 0 

with the boundary conditions 

y(a) = oa, y(b) = 3, and y(t) = (y1(t), * . (0) 

Taking a uniform mesh with step h, we discretize these systems with the three- 
point Milne-Numerov formula (cf. [4], [12], [17] for n = 1). 

(83 Nu. = 
1 

(uj- 1 
- 2u. + u,+ 1) - I2 (fj + 10f. + f.+) d 0, (8.3) h Ih211 

- 

j= 1, ,J- 1. 

For smooth f, the whole one-dimensional theory can be generalized to this n-di- 

mensional case. The linear systems appearing in the application of Newton's method 
to (8.3) are block-tridiagonal and various techniques can be used in their solution. 
Observe that the resulting method is 0(h4) and, therefore, deferred corrections will 



NONLINEAR MULTIPOINT BOUNDARY VALUE PROBLEMS 1001 

provide methods of order O(h4k). Also, the fact that we deal with second order 
systems means that only half the number of equations are used that would be neces- 
sary upon reduction to first order systems. This type of problem appears for instance 
in the two-body equations of motion (cf. [22] ), and in systems arising from the 
Schrodinger equation [1]. 

Acknowledgement. The accurate typing of this paper was produced in minimal 
time by Miss Brunilda Cerceau to whom we are very thankful. 

Departamento de Computacion 

Universidad Central de Venezuela 

Apartado 59002 

Caracas, Venezuela 

Appendix. In the microfiche section of this journal, we present a FORTRAN 

(level G) implementation of Subroutine SYSSOL, for solving nonlinear two-point 

boundary value problems for first order systems of the form: 

y' -f(t, y) = O, a < t < b, 

Ay(a) + By(b) = ax, 

where y(t) = (yl(t), *, ym(t))T, a E Rm given, and A, B are given m x m 

matrices. 
The program contains its own documentation and, we hope, is fairly readable. 

We have added the driver program and all the necessary subroutines to produce the 
results presented in Table 6. 

The subroutine itself contains no input-output instructions and, therefore, it 
should be fairly transportable. There is only one instruction (the definition of 

EPSMAC), clearly marked, which is machine dependent. In [19, p. 74] can be found 

a flow-chart which is sufficiently close to give additional information on the func- 

tioning of SYSSOL. 
The authors assume no responsibility for any damages that this subroutine may 

cause, but they will be happy to answer any comments or complaints. 

1. A. C. ALLISON, "The numerical solution of coupled differential equations arising 

from the Schrddinger equation," J. Computational Phys., v. 6, 1970, pp. 378-391. 

MR 43 #1438. 

2. P. G. CIARLET, M. H. SCHULTZ & R. S. VARGA, "Numerical methods of 

high-order accuracy for nonlinear boundary value problems. I. One dimensional problem," 

Numer. Math., v. 9, 1967, pp. 394-430. MR 36 #4813. 

3. J. C. FALKENBERG, "A method for integration of unstable systems of ordinary 

differential equations subject to two-point boundary conditions," Nordisk Tidskr. Informations. 
behandling (BIT), v. 8, 1968, pp. 86-103. MR 39 #1123. 

4. P. HENRICI, Discrete Variable Methods in Ordinary Differential Equations, Wiley, 

New York, 1962. MR 24 #B11772. 



1002 M. LENTINI AND V. PEREYRA 

S. R. J. HERBOLD, M. H. SCHULTZ & R. S. VARGA, "The effect of quadrature 
errors in the numerical solution of boundary value problems by variational techniques," 
Aequationes Math., v. 3, 1969, pp. 247-270. MR 41 #6410. 

6. J. F. HOLT, "Numerical solution of nonlinear two-point boundary value problems 
by finite difference methods," Comm. ACM, v. 7, 1964, pp. 366-373. MR 29 #5387. 

7. J. W. JEROME & R. S. VARGA, "Generalizations of spline functions and ap- 
plications to nonlinear boundary value and eigenvalue problems," Theory and Applications 
of Spline Functions (edited by T. N. E. Greville), (Proc. Sem. Math. Research Center, 
Univ. of Wisconsin, Madison, Wis., 1968), Academic Press, New York, 1969, pp. 103-155. 
MR 39 #685, 

8. H. B. KELLER, Numerical Methods for Two-Point Boundary-Value Problems, 
Blaisdell, Waltham, Mass., 1968. MR 37 #6038. 

9. H. B. KELLER, "Accurate difference methods for linear ordinary differential 
systems subject to linear constraints," SIAM J. Numer. Anal., v. 6, 1969, pp. 8-30. 
MR 40 #6776. 

10. H. B. KELLER, "A new difference scheme for parabolic problems," Numerical 
Solution of Partial Differential Equations, II (edited by B. Hubbard) (SYNSPADE, 1970) 
(Proc. Sympos., Univ. of Maryland, College Park, Md., 1970), Academic Press, New York, 
1971, pp. 327-350. MR 43 #2866. 

11. H. B. KELLER, "Accurate difference methods for nonlinear two-point boundary 
value problems," (manuscript, 1972). 

12. M. LEES, "Discrete methods for nonlinear two-point boundary value problems," 
Numerical Solution of Partial Differential Equations (edited by J. H. Bramble) (Proc. 
Sympos. Univ. Maryland, 1965), Academic Press, New York, 1966, pp. 59-72. MR 34 
#2196. 

13. M. LENTINI, Correcciones diferidas para problems de contorno en sistemas 
de ecuaciones diferenciales ordinaries de primer orden, Pub. 73-04, Depto. de Comp., Fac. 
Ciencias, Univ. Central de Venezuela, Caracas, 1973. 

14. J. M. ORTEGA & W. C. RHEINBOLDT, Iterative Solution of Nonlinear 
Equations in Several Variables, Academic Press, New York, 1970. MR 42 #8686. 

15. M. R. OSBORNE, "On shooting methods for boundary value problems," J. 
Math. Anal. Apple , v. 27, 1969, pp. 417-433. MR 39 #6521. 

16. V. PEREYRA, "Iterated deferred corrections for nonlinear operator equations," 
Numer. Math., v. 10, 1967, pp. 316-323. MR 36 #4812. 

17. V. PEREYRA, "Iterated deferred corrections for nonlinear boundary value 
problems," Numer. Math., v. 11, 1968, pp. 111-125. MR 37#1091. 

18. V. PEREYRA, "Highly accurate numerical solution of casilinear elliptic boundary 
value problems in n dimensions," Math. Comp., v. 24, 1970, pp. 771-783. MR 44 
#6165. 

19. V. PEREYRA, High Order Finite Difference Solution of Differential Equations, 
Stanford Univ. Comp. Sci. Report STAN-CS-73-348, 1973. 

20. V. PEREYRA, "Variable order variable step finite difference methods for non- 
linear boundary value problems," Proceedings Conference on the Numerical Solution of 
Differential Equations, Dundee, Scotland, Springer-Verlag, Berlin, 1973. 

21. F. M. PERRIN, H. S. PRICE & R. S. VARGA, "On higher-order numerical 
methods for nonlinear two-point boundary value problems," Numer. Math., v. 13, 1969, 
pp. 180-198. MR 40 #8276. 



NONLINEAR MULTIPOINT BOUNDARY VALUE PROBLEMS 1003 

22. S. M. ROBERTS & J. S. SHIPMAN, "The Kantorovich theorem and two-point 
boundary value problems," IBM J. Res. Develop., v. 10, 1966, pp. 402-406. MR 34 
#2198. 

23. S. M. ROBERTS, J. S. SHIPMAN & W. J. ELLIS, "A perturbation technique 
for nonlinear two-point boundary value problems," SIAM J. Numer. Anal., v. 6, 1969, 
pp. 347-358. MR 40 #8277. 

24. J. STOER & R. BULIRSCH, Einfiuhrung in die Numerische Mathematik II, 
Springer-Verlag, Berlin, 1973. 

25. J. VARAH, On the Solution of Block Tridiagonal Systems Arising from Certain 
Finite-Difference Equations, Univ. British Columbia, Dept. Comp. Sci. Technical Report 
72-02, 1972. 



FORTRAN Implementation of Subroutine SYSSOL, 

For Solving Nonlinear Two-Point Boundary Value Problems 

For First Order Systems 

by 

M. LENTINI 6 V. PEREYRA 



SUBROUTINE SYSSOL(M.NAAALPHAtAleICLOELEPSXY, 
* ABTTFFJACG8,JERRGR) 

C 
C PURPOSE s THIS IS A VARIABLE UREER, VARIABLc 
C (UNIFORM) STEP SOLVER FUR TWO-POINT BUUNDARY VALUE FIP.STV 
C CRDER SMOOTH NONLINEAR SYSTEMS Ef THE FORM * 

C (1) Y - F(IXY) , Al . Y(A) + Il . V4i) LPHA 
C U 

C IT ATTEMPTS TO PRODUCE A DISCRETE SOLUTION WITH MAXIMUM 
C ABSCLUTE ERROR LESS THAN TEL ON A UNIFORM GKIl LUNTA!-* 
C NING THE ONE DEFINED BY THE USER WITH THE PARAMPTEP N. 

C THE METHOD, HORE CETAILS AND TESTS ARE DESCRIAdO 1 N 
C 'A VARIABLE CRDER, VARIABLE STEP, FINITE CI-Ff:RENC t 

C METHCD FOR NONLINEARaMULTIPEINT BCUNCARY VALit PRtELEMS'* 
C BY M. LENTINI AND V. PEREYRA, PUb. 73-o6, OFPTO. DE 
C COMPUTACIUN, FAC. DE ClENCSAS, UNIVERSIDAD CENTRAL DE 
C VENEZUELA (1973). 
C ENQUIRIES ANO COMMENTS CAN BE ACORESSED TU 
C 
C P. LENTINI AND V. PEREYRA 
C DEPARTAMENTE DE COMPUTACION 
C APARTADO 59002 - CARACAS 
C 
C MADE IN VENEZUELA AUGUST 1973 
C 
C ***HH***********A*H******** $***R*A*H**H***$*****t$*$*t* 

CONTINUE 
C ****A****R*********H*******$F***H**MH**$$** *R$*H**UU*HR$ 
C U 

C USE * PRESENT DIMENSIONING OF ARRAYS ALLCWS PRFEC-SSING* 
C OF SYSTEMIS OF UP TO 
C MMAX - 16 EQUATICNK 
C ON GRIDS WITH UP TO 
C NMAX - 65,/M PCINTS.' * 
C THESE SIZES CAN BE VARIEG BY CHANGING THE 

C DIMENSIONS APPROPRIATELY. 
C 
C THE USER MUST SPECIFY EACH OF THE FcLLCBIN4s 

C 
C M - NUMBER CF EQUA IEhSN 
C N - NUMBER OF POINTS IN THE BASIC GRIG (COUN1ING Tt' 

C END PCINTS). N MUST BE > 3. 
C UPON EXI1, N WILL CONTAIN THE FINAL GERI SIL t 

C IN WHICH Y HAS bEEN CCMPUTED. 
C A - LEFT BOUNDARY PLINT 
C B - RIGHT BOUNDARY PCINT 
C ALPHA ,Al ,BD - ARRAYS OF DIMENSIONS MAXS 

C CONTAINING BOUNDARY CCNOITILNS.SEEt1) 



C TOL - DESIRED FINAL ABSOLUTE ERROR. * 
CONT I NUE 

C DELEPS - 4A) IF OELEPS <- 0 THEI THE PROGRAM SETS V-2 AS* 
C INITIAL VALUES. 
C IF CELEPS IS SET O AMY VALUE >- I THEN THE:A 
C PROGRAM ASSUMES THAT THE USER WILL GIVE 
C INITIAL VALUES FOR YV. THESE INITIAL VALUES 
C (ON THE INITIAL MESH) MUST BE STUREO AS 
C INDICATED BELOW (SEE OUTPUT PARAMETERS). 
C (B) A CONTINUATIUN METHE0 CAN BE EMPLOYEE AS ANt 
L OPTION IN SEVERELY NON LINEAR CASES IN $ 
C ORDER TC GENERATE GOOL INITIAL VALUES. THIS* 
C PRESUPOSES THAT THE USER HAS EMBLDDED HIS 
C PROBLEM IN A ONE PARAMETER FAMiLY: 
C Y' * FIX, V. FPSNU)t 
C SUCH THAT FOR EPSNU .0 THE RESULTING 0 
C PROBLEM IS 'SIMPLER', AND FOR EPSNU - I 
C THE URIGINAL PROBLEM IS RECOVEREE. THE 
C PROGRAM WILL AUTOMATICALLY ATTEMPT TC Gu * 
C FRCM EPSNU - 0 TO EPSNU -1 IN STEPS CF * 
C DELEPS. THUS IN THIS CASE 
C 0 < OELEPS <(I 
C DNCE EPSNU-> - 1 THE REGULAR PROCEDUER 4 
C CONTINUES. THE USER MUST GIVE INITIAL H 
C VALUES FOR V AS IN (A). 

CENT INUE 
C WHEN USING THIS OPTION THE USER NUST H 
C INCLUDE IN HIS SUBROUTINES FF. JACC8 
C THE COMMON CARES 
C CGMMOC /Cl/ EPSNU 
C IN CROER TO EESCRIBE THE PARAMETRIZED * 
C PROBLEM 
C 
C * ** ** *J AHHH W***WWHH** ***H*H***H*W*H**WHHHHHHHH 

CONTINUE 
C* RRHAWHHHRHH*HHHHH*HH*HHWHHH***W*BB****HWHHWHH HAH*HHH*H*Ht* 
C 
C AAH USER PROVIDED SUBROUTINES HAR H 
C 
C 
C FF - NAME OF SUBROUTINE FOR EVALUATING F(XtY) C(N 
C THE WHOLE MESH. THE SUBROUTINE ITSELF MUST bc H 
C PROVIOEC BY THE USER ARD IT SHOULO HAVE THE H 
C FELLOWING HEADING 

C SUBRLUTINE FFAXYONOF) H 

C WHERE F IS THE VECTOR CONTAINING THE VALUE5 H 
C OF F(X#Yi. STORAGE Of F IS THE SAME AS THAT H 

C OF Y (SEE BELOW) 
CONTINUE 

C JACOB - NAME Of A SUBROUTINE FOR EVALUATING THL H 
C JACOBIAN OF FEX9Y) AT A GIVFN ERIE P6INT. H 
C THE SUBROUTINE ITSELF MUST BE PROVIDED BY H 
C THE USER. ARE IT SHOULDO AVE THE FOLLOWING 



C HEACINGI * 
C 
CJ 

C SUBROUTINE JACCB(XXYYXJAC) X. 
Ct 
C WHERE XX IS THE GIVEN GRID PLINT, VY IS 
C THE CURRENT VALUE OF Y AT XX, ANU THA 
C MMAX*MMAX ARRAY XJAC SHOULG BE FOLLtO BY'T 
C THE USER WITH THE CCRRESPONOING PARTIAL 
C DERIVATIVES ACCORDING TL * 
C XJAC(IJ) - DFI/OYJ 

CtN TINUE 

C 4 
C *4 CIJTPUT PARAMETERS 
C 

C SE" N ABOVE 
C * 

C Y - NMAX*4MAX-VECTOR CONTAINING THE CCOPUTED * 

C SOLUTIGN CN THE FINAL GRID * 
C THE GRI& VECTOR FUNCTION Y(X) IS STCRED 
C SOQUENTIALLY IN THE FORM: 
C Y(IliY2(Xl)).-tYM(Xl),YA(X2) ...YHIXN * 
C THE PROGRAM SETS Y TC ZERC INITIALLY WHEN 4 
C DELEPS <- C. 
C X - NMAX-VECTCR CONTAINING ThE FINAL GklC PCINTS. 
C ART M-VECTOk CONTAINING MAX ABSOLUTE ERkOtR ON THE r 
C GRID FOR EACH COMPONENT CF THE APPRGXIMATE 
C SOLUTION * 

CONT INUE 
C JLEELi - ERREL COCED INTEGER VARIABLE. 
C JLK*RR * REQUIRED TOLERANCE WAS REACHC U 
C JERALE I N OR INITIAL N ARE OUT OF KANGr. 
C CORRECTIAG ACTION: CHECK THAT INPUT SOYA * 

C SATISFIES C < M<- MPAX AND 3 < N <- NMAX s 
C AND RERUN. 
C JERROR * 2 THE PROGRAM HAS ATTEMPTEc TO USk A 4,RID- 
C WITH MORE THAN NMAX POINTS 4 
C CORRECTING ACTION: IF PARTIAL kESULTS SETM 4 
C REASONABLE. INCREASt MP.AX*NPAX * 65N ANh L 
C CHANGE DIMENSIONS IN ALL SUBRUUTINES ACCORDING.* 
C IN CRDER TO ALLCN FINER GMILS 4 
C *$*****4***4******R*H********4*R****r***4* H4**4$*r**t**4**4 

CECNT INUE 
0 **4*RR***********H******44****~*4*$ 444444*444444$*4.*4444* 
C 

C *** CTHER SUBROiUTINES NEECEC eY SYSSOL 4*4 4 
C 

C SYSLIN - SOLVES A BLtCC LINRAR SYSTEM Of SPECIAL TYPE. 
C DGELG - SOLVES A LINEAR SYSTEM OF EQUATIONS * 

C DARRAY - TRANSFORMS BETWEEN TWL AND CNE CIMiNSICNAL 
C STORAGE. 
C U2DC6S - DEFERRED CORRECTIUN GENERATOR ANC INTERPLLAIIGN* 



C COEGEN - WEIGHT GENERATOR * 
C 

C*$**$*A********ANA***AAA*A***MAM**RAAA.*$*R*A$*AAA*A**$***** 
C 

IMPLICIT REAL*8(A-HO-Z) 
COMMON /Cl/ EPSNU 
LOGICAL DIVNEW 

c$**..*......*.**..*......*...$*e*s*....$:**+$** t*$$ 
C * 

C IN CALLING PROGRAM THE PARAMETEP ARRAY X MUST be * 
C DIMENSIONED AS X( 650/P 3 
C 

DIMENSION Xi1) 

C DIMlENSIONS INVOLVEO IN THE FULLCWING PARAMETER ARRAY5 * 
C ARE HMAX * 1D AND NMAX*MMAX - 6SC, AND 1EY MUST 8R 
C DIMNkSIONEO ACCORDINGLY IN THE CALLING PROGRAM 
C I 

DIMENSION ALPHA( 1Q)Al(D1,lO),RD(Do1,C)t YI65C ),Ab7Siu1 
C $ 
C FOLLGWING ARRAYS ARE WORKING AREAS. 

DIMENSION F1650),UU(65),RESI6so),SKI6s5), 
C * 

'A8SEXI DlO A8RR DO) TEMPE 1G) 
C 

C WORKING AREAS WITH SIZES RELATED TO MAX. NU"MtD Of 
C DEFERRED CORRECTIONS - 2 ? WHICH SHOULD BE AOEQUATEC 
C FPR ALL PURPOSES. 
C 

D1MENSION AA(50D),RI5GE)CCI20) 

C 
C 

MMAX-10 
NMAXI65C/M 
IF((M.LE.u).GR.(N .GT.MMAX).GR.IN.LE.3).OR.4N.GT.N*AXI)Ui TO 1 
GO TO 1D 

1 JERRCR-l 
RETURN 

C 

C<<<.... ERROR EXIT 1. ......... 
C 
C INITIALIZATION 
C 
10 MPN-M*N 
C 

C THIS CONSTANT IS MACHINE DEPENDENT: * 
C EPSMAC IS APPROXIMATELY 10* RELATIVE PRECISION OF * 
C FLOATING POINT ARITHMETIC 

EPSMAC-5.D-15 
CR***RRRRRRRRRRRR*RRARRRRRRRRRRMR*RRRRRRR RERERRE R***$$ 
C 

EPSNU- 0. DO 
JERROR-0 



"I-"*I M2-MBM 
IF (DELEPS.GT.O.D0)G0 TO 60 

C 
C FIRST APPROXIMATION FOR Y 
C 
4C DC 50 I-iMPN 
50 Y(SI)O.DO 
C 
60 688l).l.DC 

DO 105 I-29, 
105 BRIl)-O.DO 
CR**A*B*B*******BB*****R*$**A** *********$** ***$t$* 
C 
C IN CORRECTIGN NUD0 THE RESIDUAL IN THE NEWTON ITERATION* 
C MUST BL REDUCED IN NORM BELOW EPS-C*H**4, WHERE C IS* 
C A SMALL CONSTANT. FOR NU > tt WL USE THE ERROE LSTIMATE* 
C CGRRESPONDING TO CORRECTION (NU-1i * EAROLO, IN EEGER T- 
C ORTAIN THE NEW EPS- C*H**2*ERROLD. IN ALL CASES LPS * 
C IS NOT ALLOWED TO BE SMALLER THAN EPSA. * 

C 
CR*******************$***R*$*** *******$****g$*t$$* 

EPS-DMAXI(EPSMAC,.OiDC*I(B-A)/(N-1i))*X4) 

C 
C....>>> ENTER UPON STEP HALVING .... 
C 

120 ERROLD-i.OD2C 
KKAX-(N-21/2 
MPNM-MPN-M 
Ci0.v BOO 
Ni-N-I 
H-( B-AlINi 
HCUA-HB*2 
DO 150 1-1uiPNM 

150 SR(I)-O.DO 
X(i)-A 
1(N)-B 
DO 200 1-2,Ni 

1 1^1 -1 

200 X()IA*V11*H 
IF(NU *EQ. 0)60 TO 405 

C 
C WHEN STEP-HALVING WE HAVE TO INITIALIZE SK IF NU GT. 
C 

CALL FF(XYNF) 
CALL UZDCGSDS(NU,2,ZNiMAAFRESiIERRCR) 
00 300 I-1iMPNP 

300 SK(I1-H*RES(I) 
C 
C....>>> NEWTON ITERATION STARTS ... 
C 

405 INWT-S 
REOLD1..0020 
DIVNEW-FALSE. 



IFPNEUIE.L.KMAX)6G0 TO 410 

C MAXIMUM NUMBER OF CORRECTIONS ON IHIS MESH HAS BEON 
C REACHED. GO TO 'STEP HALVING' 

NU-NU.S 
GC TC 260C 

. >.>)> LABEL 4IN IS INPUT FCR NEWTON ITEPATION ..... 

c 
C ERLSDUAL COMPUTATION 

'do AABS'C.DO 

SUMALPHA( I) 
DO 6vO J-1,P 

600 SUM-SUM-AS(IJI*YT(J)-A(I1J)*YT(MPNMJ) 
RESI I .-SUD 
7 EM-DABSIRES( I)) 
IF (TEM.GT.RABS BRARS-TEM 

70) CCNTINUE 
8Q0 CALL FF (Xqh,F) 

DC 9CG I*2,N 

0~ 9C9 J'1,M 
KIJ.KIOSJ 
KIJM-KIJ-M 
RES(KEJ)--YTKIJ*YAK(IJM)AH/2*(F(KlJ),-(KlJM) l*SKIKIJM 
TEM-DABSIRESIKlJ)) 
IF(TEM.GT.PABS)RABS.TEM 

90w CONTINUE 
C 
C THE FIRST TIME TBROUGH WE DON'T CHECK ANYTHING 
C 
SoS IF(INBT *EC. 0) GC TO 950 
910 IF(RAAS.LT.RECLD.OR.INWT.EQ.S)GU TO 92C 
C 

C IF THt RESIDUAL INCREASES AFTER THE FIRST ITERAlIlb 
C WE ASSUME DIVERGENCE AND DO TO HALVE THE STEP SIZ_ 
C 

CIVNEW-.TKUE. 
NU-NU+I 
DO TO 260C 

923 iF(RABS.LE.EPS.UR.INWT.GE.5)GO TO lSC; 
sC 
C. NEWTON EXIT (CONVERGENCE CR TCC RANY ITERATION.,) 
C 
950 CALL SYSLIN(MNhXYTHJACCBRESAlSOBIUU) 

REOLD-RABS 
C 
C APPROXIMATE SOLUTION IS CORRECTED 
C 

1100 00 13C0 EISMPN 
1300 V(I)Y(I)4'*UU(I3 
C 



C NEXT TWO INSTRUCTION ARE FOR CONTROL LF PAKAMETi~ 
C IN CONTINUATION METHOD 

EPSNU.OMINS(EPSNU+DkLEPS,1I.CO) 
IFIEPSNU.GE.I.OO.OR.DELEPS.CE.L~.OU)INW1I-IWT.I 
GO TO 410 

C 
C CORRECTION AND ERROR CONTROL STARTS 

1500 NC.NU.O 
NU2.2RNUl 
AA(NUZ).-OFLOAT(NU)/DFLOAT( (2R*(2*NU-S)RNU2JJ 
AAfNU2+I) 1.D.0 
CALL U2DCGSRNU,2,2,N1,NAAERESIcAEkIk 
IF(IERRO'R EAQ. I) GO TO 26)00 
00 1700 1I.GMPNpE 

AUXI-RES( I (R 
RES( I 1.K(1(1-AUjXI 
SK(1(1-AUXI 

5170C CONTINUIE 
CALL SYSLIN(MNX.THJACCRtiE$.Al.AltUU) 

C ESTIMATE FOR MAX. ABSSLUT6 ERROR (IT CCMFLNLNTSJ 
C 

ERRNEW-C.DG 
DO 1900 J-1,R 

19CC ART(J)-.D.O 
GE 2100 I-GN 
DO 214.O J.1,M 

EI-( I-G)RM+J 
U GDARS (UU (KG I 
IHlUl GT. ART(J)) ART(J)=OI 

2100 CONTINUE 
DO 2300 JI.1,P 
IF(ABT(J) .GT. EkkNEWI ERRNEW-ART(JI 

2300 CONTINUE 
K-NU-1 

2500 IF(MRNEW *LE. TCLIRETUEN 

C<<<.... PRECISION ACHIEVOLL ...... 

C CC(K+G) CONTAINS ESTIMATED ERROR FLF CLkEOTILN 
C ON MESH SIZE HI/O (UNDER THE HYPGTiESoIS LEPL., TN 
C CORRECTION KfH) - C*HRR(ZRK+211. 

CC(NU).ERkNEW*4.DORR(-NU( 
IF(ERRNEW LCE. I*GERROLD) GO TO 255C 
IFIRERNEW *GT. CIRERRECO) GO TO 26001 

C EITHER KEEP CORRECTING 
C 

C THE ERROR REDUCTION THRESHOLC Cl IS SET CkIGINALLY (ANV 



C AkBITRARILY) TC C.8. IF CI*EHRCLi, C EGREtl WE HALVE t 
C THE STEP. cACH TIME THAT '.O*ERRLLD C Lh.'iNLW <Cl*,*GULD* 
C WE SET. Cl SC 4A.5*Cl THUS ACTUALLY ALLEWING THIS T: HA- 
C PPEN A MAXIMUM CF THREE TIMES, BEFORE THe 4lGi: ilItE1 4 
E, TEST WITH Q.l*EkHkLu TAKES OVER COMPLEtTLY. 
C ERRCLD IS THE EREOR ESTIMATE FCR THE LAST CiEHRECTIF'N bUV4 

L ChE WHILE ERRNEW IS THE lEE CORRESPONDING li, lli LGST 
C CCRRECTION. 4 
C 

255C EERCL-D.ERhEW 
EPS'DRAXI(EPSPAC,.i. ID.*H**2*ERROLDJ 
GE T, 405 

C.... >>> CR FALVE THE STEP SIZE 

26CC IF(2*N-I.LE.ERAX)GG TC 2625 
JLRRER-2 
GETURN 

C 

C<<C<............. TUO MANY GRID PCINTS ...... 

2625 K=2*N-1 
PPN=*4N 

C 

C IF NEWTON DIVERGEC WE START AGAIN WITH NU.4* 
C 

IFI(CIVNEW)GO 1C 4' 

C 
C NEW WE DECIDE THE LEVEL CF CORRECTICON Cs THE NFb AE IGC 
C WE ASSUME TSAT THE LAST ESTIMATED iEHRER (PRESLNTLY IN 
C ERECLDJ WILL BE FRESERVED AFTER INTERPFLATING, AND 
C THERtFLRE WE LOCATE THE FPIST INDEX I FCR WhICH 4 
C CC(I)<=ERROLOD WHERE CC(I) IS THE PREOICILO CERsk FE-, 
C TF (1-1 CORRECTION EN THE NEW GRID. 
vC 

NUINT=NU 
IF(ERRNLW.Gt.EkRLLDJGC TO 265T 
EPROLD-ERRNEW 

265i EL 27G I.I=,Nt 
IFIERROLD .LT. CC(I)) GO TO 27(,L 
GC TO 275i 

275t CLNTINUE 
275c NU.I-1 

EPS=DMAXl(EPSMAC..CE50DU*H**2**ERELA) 
*4*4*4*44* *4****GA ****4**4*A****** *4*4$*4* * 4 4*4* .444 44 ^ 

C ' 
C COPPUTATIEN Of FIRST APPRCXIMATICh FOR Y EN N' "W Sh 4 
C BY MEANS OF U2DCGS WILL GIVE CRDER OF INTEPtI;LATILN 
C ?2*NU*2)t WHERE NU IS THE LAST SUCCESFULL CUGkLCT!E 4N 
C PERFORMED EN THE COARSER GRIU. 
C e 



2806 NC2-(N-1)/2 
MP02-MNRC2 
00 294 I=1l,NP02 

290C RLS(I)-Y(II 
NO21-NU2-1 
CALL U20CGS(NUlNT,2,oGN21,,*BRYSKftpcR4) 
0D 310;J I*1,NC21 
Kl( I-lI*A 
K12-2*K1 
DC 310i L.1., 
Y(KI2+L)-RES(KI+L) 

3100 Y(KI2-NAL)-SK(KI+L) 
DC 3240 L-1,M 

3200 Y(MPN-14+L)4RES(MPL2-M+L) 
GC TC 12G 

C.. START ON NEW RHI ....... 
END 

C- 
- - - - - -- - - - - - --- -- - -_ - _----------_-__-_--_--_-__-__-_--_- 

SUOAGUTINhE SYSLIN(NN.XYHJACCB,Ik _oI4 l,4l4U5) 
IMPLICIT R1AL*8(A-hC-l) 
CIM NSION X( 11,Y( 11,00 1) .RE5(l) 

C 

C 444 SGLUTIhN OF LINEAR SYSTLM 444 
C 

C 

C FCLLOWING ARRAYS ARE WORKING AREAS. COiMNSluh_ llV:LVECs I 
C ARE: MRAX=IC , MNAX*D = 11 , RNAX**Z-1, ,t 
C NMAX*MMAX=65C0, MMAX(MMAX+I.h-l, 
C 

DIMENSION T( 1GS),U(lCS(lO 1o VH(Gu,11),4lE ), 
4 R (65O.DG)AUX(DoII)AlSlSDl-1.l(I S kt 

OCUBLE PRECISIGN JAB(l1e,1) 
C 
C444444444 N N *********44444444 44RR4444R44 44*4444W*44444444- 
C 

C 
C IT SULVES THE 2*2 BLCCK SYSTEM 
C I R) I G B a t 14 
C I-- I~ -- 1 1-- ---- I sS- 

CI D) I X I 11 1 
C WHERE A IS P*M AND D IS M4*N)*(M*K) ANU ALL ITk CTI-R t 
C BLCCKS HAVE THE APPROPIATE DIMLNSIONS. 0 15 6LD-Op LW4k 4 
C BIDIAGINAL, WITh MAIN DIAGONAL bLGCKS R(1) AhL : 
C SUB-DIAGONAL S(l ALL OF SIZES MA*. * 
L C HAS ONLY THE FIRST BLOCK DIFFERENT FRUM ZRP'J, ANDO - 
C ONLY THE LAST BLOCK DIFFERENT FROG ZERZ. 



C * 

CONT INUE 
COUTLINEO**F E**HD ******** 
C 
C B*B OUTL INE OF THE METHOD *** 
C * 
C FIRST WE FORM C'tCI81) AND THEN WE SOLVt THE MATRIX * 
C SYSTEM DV'-C' IV'-(VIWI* 
C BY THE RECURSIONI VI0)D-0 * 
C RIJ)VJI)-IC'(J)-SIJ)VIJ-11), J1=1. N * 
C THESE LINEAR SYSTEMS ARE SOLVED BY A STANDARD GAUSSIAN * 
C ELIMINATION CODE (SUBROUTINE DGELG). * 
C FINALLY XO IS THE SOLUTION OF THE LINEAR SYSTEM * 
C (A - e VI XO - BO - B W AND * 
C X = W - VO * 
C * 
C* * -*************** ********************** 

CONTINUE 
C t**** * *B*************** ************** 
C * 
C *** CAUTION * 
C * 
C THIS SUBROUTINE MANIPULATES SOME MATRICES AS ONE * 
C DIMENSIONAL ARRAYS. * 
C SUBROUTINES DGELG AND DARRAY ARE FROM THE IBM/360 * 
C SCIENTIFIC SUBROUTINE PACKAGE. * 
C THE SUBROUTINE DARRAY TRANSFORMS BETWEEN TYPES OF * 
C STORAGE. * 
C * 
C********************** ****************** 
C 
S50 CALL JACOBIX(XlYJABI 

M2=14*M 
MPN-M*N 

C *** SOLUTION OF O.V' - C' *** * 
C * 

00 1000 1-1,M 
1000 TI M2+I l.RES(M*I I 

00 1800 L-2,N 
Kl IL-1 R*M 
DO 1100 I=1,M 

1100 UIJ)=Y(K1+J) 
C 
C *** GENERATION OF JACOBIAN *** 
C 

H2=. 5DO*H 
DO 50 J=1,M 
Kl=(J-11*M 
DO 50 I=1," 
St IJ).H2*JA(IJ) 
IFII .EQ. A) S(IJI.StIJ)*1.DD 

50 CONTINUE 



CALL JACOB(X(L),UJAB) 
DO 60 I-1,N 
DO 60 J-1,N 

K1- (J-1)W14I 
k(Kl)--I2*JAB(I,J) 
IF(I.EQ.J)R(K )-R(KI )+1.D0 

60 CONT INUE 
IF(L.NE.2)GO TO 1300 
DO 1200 J-1,N 
K1-(J-1 *M 
DO 1200 1-1,1 

1200 T(Kl-l)--S(I,J) 
GO TO 1700 

C 
C COMPUTATION OF (C - S.V) 
C 
1300 DO 1500 KI-1,Hj 

DO 1500 I-1,m 
SUN-O.DO 
DO 1400 J-1,M 

1400 SUNSU?4S(I,J)*VM(J,Kl) 
1500 T((Kl-l)*M.I)-SUN 

DO 1600 I 1,N 
1600 T(H2+I)-T(K2+I)+RES((L-l)*H+I) 

1700 CALL DGELG (TRvIll.D-7,1ER) 
1750 CALL OARRAY (1,N,Nl,10,11,T,VN) 

DO 1800 J-l,Hl 
DO 1800 1-1,' 

1800 V((L-l)*f4.I,J)VH(I,J) 
C 
C ** END OF RtCURSION *** 
C 

DO 2000 J-1,01 
DO 2000 1=1,11 
SU- 0.D0 

C 
C PRODUCTS d.V AND B.W 
C 

00 1900 K=1,M 
1900 SUM-SUM+B1(I,K)*VH(K.J) 
2000 AUX(I,J)-=SU 

C 
C (A - B.V) 
C 

DO 2100 J-1,M 
K1= (J-1*M 
DO 2100 I-1,M 

2100 R(Kl+-lA1A(I*J)-AUX(IJ) 
DO 2200 I-1,M 

2200 UU(I)=RES(I)-AUX(IHl) 
C 
C SOLUTION OF LINEAR SYSTEM 
C (A - B.V) X0 - (80 - B.W) 
C AND COMPUTATION OF X 
C 



DO 1 I=1,N 
I C(IIRB(I 

DO 11 1-1, 
11 ALF(I1I=-NP-0.5DD 
2 NN-N-1 

DO 6 1-1,NN 
LL-N-I 
DO 6 J=1,LL 
K-N-JRl 

6 C(KI)C(KI-ALFI(I*C(K-1I 
DO 8 1-1.NN 
KRN-I 
XKINPl.DO/K 
KM1-K 1 
DO 8 J-KM1,N 
C(JI-C(J*XTKIN 
JMI=J-l 

8 CIJM1i-C(JJlM-C(JI 
RETURN 
END 

C__-_---_-_ 

C DRIVER PRUGRAM FOR PROBLEMS 1 TO 5 
C SEE REFERENCE IN COMMENTS TO SUBROUT1NE SYSSOL 

IMPLICIT REAL*R(A-H,0-Z1 
EXTERNAL FF1,JACOB1 
EXTERNAL FF2,JACOB2 
EXTERNAL FF3,.JACOB3 
EXTERNAL FF4,JACOB4 
EXTERNAL FF5,JACOBS 
CLJMMN /P5/ ALPHA1,BETAISI,C1 
DIMENSION AI(IO,10),BI(1O,10),ALPHA(1O),Y(650),X(326),ABT(IO) 
NO=3 
DO 20 IN-1,5 
NO.2*NO-l 
TULL-I.DO 
Do 20 KL.1,3 
TOL.TOL*I.D-3 
Do 20 IP-1,5 
N5NO 
WRITE (3,200) IP 
DELEPS-0.DO 
GO TO (19,,3,4,5iIP 
M-2 
A-0 .00 
B-3. 141 5926535B9793DO 
ALPHA( l-O.DO 
ALPHA(21-0.DO 
DO 1000 1-1,2 
0DI 1000 JI,2 



Al( I,J-0.D0 
100) 8I(1,J)-0.D0 

AI( 1, I1-I.D0 
81(2.1) -1.00 
CALL SYSSOL(S.N.A.8,ALPHA.AI.81,TOL.DELEPSXlYA8T.FFl1JArCIU8l 

*JERRUR) 
GO YU 10 

2 M-2 
8-0.00 
S-I.D0 
ALPHA( 11-o.D0 
ALPHA(2)=20.DO*( I.lO-0EXP(-20.DO /1 I.DO+DEXP( -20.DO) 
00 2000 1-1,2 
00 2000 J-1,2 
Al (IJ-O0.00 

2000 81(1,J).0.D0 
Al( 1, I) -1.DO 
81(2,2)- 1.DO 
CALL SYSSOL(8.N.A.BALPHA.AI 81.TOL.OELEPSXTYA8T.FF2.JAC082. 

*JE RROR X 

GO TO 10 
3 .-2 

As O.DO 

D0 3000 1-1,2 
ALPHAI ? 1O.DO 
0W 3000 J-1.2 
A1 ( I ,JiO.DO 

3000 BI(I,J1-0.DO 
All 1, 1 1.00 
81(2,11-I.D0 
CALL SYSSUL (NN A8.ABLPHA.AI81,TOLDELEPSXYABTFF 3,JAC083. 

* JE RROIR 
GO TO 10 

4 M=4 
A-0.00 
Bl.DO 
00 4000 1-1.4 
ALPHA( I1*0.00 
D0 4000 J-.,4 
All( I. J)0.D0 

4000 81(1,J-O.DO 
All 1,.1I1.D0 
Al (2.21-1.DO 
81(3.11-1.00 
81(4,21.1.00 
CALL SYSSOL(NNA,8,ALPHAAI,81,TOLOELEPSXTABT,1f4,JAC084, 

*JERROR) 
GO TO 10 

5 M-4 
ALPHAI-2.500 
BETAI-ALPHAI 
Sl-10.00 
CI-O.ID-2 
A-0.00 



a- 10. DO 
00 5000 1.1,4 
ALPHA( I )-O.0 
00 5000 J-1,4 
Al1 IJ)-O.DO 

50U0 dl(l,Jl-O.DO 
Al( l,1)-I.DO 
Al (2,4)-I.DO 
61( 3,2)-l.Do 
81(4,4)-l.DO 
ALPHAI4)-C1 
CALL SYSSUL(,NAB.ALPhAAIA1,TOLDELIPSXT,6ATFF5,JACO05, 

*JE RROR) 
10 WRITE(3,l16),NAAA(LPHA(Ii),-IN 

WRITE(3,1)((IAI(IJ),J-lN),l-lN) 
WRITE (13,18((Bl(IJ),J-1,N)v,1-1.N 
WRITE(3,19)TOL 
WRITk(3,13 IAJ T J(J),J-I, 
WRI TE( 3, 15) 

20 CONTINUE 
55555 STOP 

12 FORMAT(' * ERROR ESTINADO-'D 12.3,' EN CORRECCIUN',13,' *' 
13 FURMAT(' ERROR ESTIMADO PUR CONPONENTES/' ',IOD12.3) 
15 FORNAT(IIO,' *AAAAAAAAANAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAA '/ 

16 FURNAT(IHO, I NUNERO DE ECUACIONfS ,12/0 NUNERO 0E 
* PUNTOS DE LA RED6,13/' ', 
*AEXTRENU IZQUIEROO DEL INTERVALO' PF10.6,2X, 'EXTRENO DERECHO DEL I 
*NTERVALO=',f10.6//' CONDICION DE CONTORNOVI '95110.6,2X1) 

iA FORNAT(' NATRIZ DE CONDICION E CONTORNO/' s,5(FIO.6,2X)) 
19 FORMAT(' TOLERANCIA' 0D12.2) 
100 FORMAT(312,2F23.15/3F23.15) 
200 FORNAT(IHI,' PROALEMA', 14/) 
300 FORNAT(IHO,' CONDICIONIS DE CONTORNU'5023.15) 

500 FORNAT( IHOO10.2,6020.12) 
END 

C? 

SUAROUTINE FFI(XYNFF) 
IMPLICIT REAL*8 (A-,O-Z) 
DIMENSION X(I1,Y(I),FF1I) 
DO 10 I-IN 
Kl-I_-I ")*A2 

FF(KI)-Y(KII) 
10 FF(KIAl). I.DO-Y(KI)A**2)*Y(KIRl)4.DO*Y(KI )-5.DO*DSIN(X( I z- 

*(DCOS(X( I )))**3 
RE TURN 
ENO 
SUBROUTINE JACUBI(X,YX,JAb) 
IRPLICIT REAL*$ (A-HO-Z) 
DOUBLE PRECISION JAB10,10) 



UIMtNSIUN YX(S) 
JABS 1,11-0.00 
JAB(2,1i.-2.DO*YX(IT*YX (14-. DO 
JAB( 1,21-1..0 
JAB(2,2)-l.DO-YX( 11*2 
RETURN 
END 
SUBROUTINE fF2( X,Y,N,FFI 
IMPLICIT REBL*8 (A-H.O-Zi 
DIMtNSIUN X(ITY(11,FF(II 
Pl-3.141 592653589793DO 
DPI 22.DBO*PI*2 
DP 1=2.DO*P I 
Do 10 I-1,N 
Kl-(1-I)*2 1 
FF(KI)-Y(KI1i) 

10 FF(KIlI=400D.OT*(Y(Kl)DCUS(PI*X(I))**2).DP12*DCOS(DPI*X(II) 
RETURN 
END 
SUBROUTINE JACDB2 (XYX, JAB) 
IMPLICIT REAL*8 (IA-4,D-L 
DIMENSION YX(S) 
DUUBLE PRECISIUN JAB(101,U) 
JAB( 1,1 )=O.DO 
JAB(2,I )-400.DO 
JAB( 1,21=1.DO 
JAB(2,21=U.DO 
RETURN 
END 
SUBROUTINE FF3(XYNFF) 
IMPLICIT REAL*8 (IA-$,D-L 
DIMENSION X(lTY(1SFF(II 
DO 10 I-I,N 
Kl=( 1-1 B*2D1 
FF(KI)-Y(KIR1S 

10 FF(KI0lI=DEXP(Y(KI)) 
RETURN 
END 
SUBROUTINE JACUB3(XYXJAB) 
IMPLICIT REALSB (A-H,U-Z) 
DIMENSIUN YX(S) 
DOUBLE PRECISION JAB(10,10) 
JAB( 1,11=O.Do 
JAB(2, 1)-DEXP(YXT I)) 
JAB(I, 1=1.D0 
JAB(2,2 1-0.00 
RETURN 
END 
SUBROUTINE EF4(X,Y,N,FF) 
IMPLICIT REAL*8 (A-HO-L) 
DIMENSION X(),TY(I),FF(I) 
DO 10 I=I,N 
Kl-()-I)B*4* 
FF(KI )T=Y(KI ) 
FF (Kll )-Y (KR2 I 



FF(KE121-Y(KL+3) 
10 FF(KI-31=DEXPIX(I))*(II(X(I)414.DOU*X(I0*49.DO)*X(II'32.DO)XXII 

2 -12.DO) 
RETURN 
END 
SUBROUTINE JACOB4(X,YX,JAdB 
IMPLICIT KEAL*8 (A-tI,-Z) 
DOUBLE PRECISION JAB(10,10O 
DIMENSION YX(l) 
DU 5 1-1,4 
DD 5 J-1,4 

5 JAB(IJI-O.DO 
JAB( I,21-.D0 
JAB(2,3)l.DO 
JAB(3,94-1.D 
RETURN 
END 
SUBROUTINE fFS(XYN,FF 
IMPLICIT REAM*B (A-HO-ZL 
COMMON IP5/ ALPhAIBETAIS1,C1 
DIMENSION X(lTY(lFFIll 
DO 10 I-l,N 
KlR(II-11 *401 
FF(KI)-Y(Kl*li 
FF(KI-1I=dETAI*(Y(KIl-YT(KI*2) 
FF (I 21 Z=Y(KI-+3 

10 FF (KI*3=ALPHAI*(Y(KRI*21-Y(KRI 
RETURN 
END 
SUBROUTINE JACOB5(X,YX,JABI 
IMPLICIT REALB8 (A-4lO--Z 
COMVMON /PS/ ALPHABETAISlCl 
DOUBLE PRECISION JAB(10,10 
DU 10 1-1,4 
Do 10 J-1,4 

10 JAB(I,J1-0.DO 
JAB (2, Il-BETAI 
JABI1,2)-I.D0 
JAB( 2,31=-BETAl 
JAB(3,9411.Do 
JAB(4,1 -ALPHAI 
JABI4 ,31 =ALPNAI 
RETURN 
END 



2210 CALL DGELGIUU,R,Ml,1.OD-7,IERI 
2250 DO 2400 I=Ml,MPN 

SUM-VZ I ,"1 

DO Z300 J 1,M 
2300 SUM-SUM-V( I ,J *UUIJI 
2400 0U111-SUM 

RETURN 
END 

SUBROUTINE U2DCGSIKPQNNAYSIERkROR 
IMPLICIT VEAL*SIA-H,O-ZI 
INTEGER P,Q 
DIMENSION A50) ,Y1650),S16501,C(SO0 

C * * 
C * THIS IS A TWD POINT BOUNDARY VALUE DEFERRED CORRECTION GENERA- * 
C H TOR FOR SYSTEMS OF M EQUATIONS. GIVEN THE ASYMPTOTIC EXPANSION * 
C * TIK) - SUM(IAJI*(D**(J-LIIY/(J-1I * H**j-III * 
C H J = QA1,. ..QP*K * 
C * AND VECTUR FUNCTION VALUES Y(Tl. TI.,Y(N*1I, CURRESPONDING TO * 
C * AN UNIFURMTY H-SPACED MESH : X(II - X111 A I1-1*H1 ,N-1 * 
C * U2DCGS WILL PRODUCE S1 . S.. IS N-1): AN H**IQ-P*KI ORDER * 
C * APPROXIMATION TO T(K) AT MIDWAY BETWEEN EACH PAIR OF CONSECU* 
C * TIVR GRID POINTS * 
C * FOR FIXED INTEGERS NPQ, A RESTRICTION ON K IS 
C ****** K .LE. (N+I-Q*/P 
C * ALSU P .GE. I , K .GE. I * 
C * IERROR = 1 MEANS THAT ONE OF THESE CONDITIONS HAVE BEEN VIOLA-* 
C * TEU AND NO CORRECTION HAS BEEN COMPUTED. All),...?1,Q0 ARE SET * 
C * TO ZERO BY U2DCGS. * 
C * BATH Y AND S ARE STOREU AS VECTORS: Y(I,X'lIIY(2,X(IXI,... * 
C ** 
C H FOR MORE DETAILS SEE CHAPTER III OF 'HIGH ORDER fINITE DIFFE- * 
C * RENCE SOLUTION OF DIFFERENTIAL EQUATIONS' AY V. PEREYRA. TECHN * 
C * REP. STAN-CS-73-348 , STANFORD UNIVERSITY 119731. * 
C * 
C * APRIL 1973 ********* M. LENTINI 6 V. PEREYRA* 
C * 

IF 1K .GT. IN+l-Q/P .OR. P .LT. 1 .OR. K .LT. 1I 
I GO TO 100 

IF IQ.EQ.Ol GO TO 10 
DO 20 1=I,Q 

20 A II=O. 
10 KKR1=EP*K 

KK-KKI- 1 
KMIlKKI/2 
I ERROR,0 
KM IU1-KMID-1 



C UNSYMMETRIC APPROXIMATION LEFT BRUNDARY 
C 

1 IF(KMIDI .LT. I) GO TO 25 
DO S I-O,KMIDI 
CALL COEGEN(KKII,CqA 
DO 7 L-IM 
ACUM-O. 
WO 4 J-1,KKI 

4 ACUN=ACUM.C(J)R*YII5-l).1 +L) 
IT-(I1-1) *L 

7 SIIT)=ACUM 
5 CONTINUE 

C 

C CENTER RANGE 
C 

25 CALL COEGEN(KK1,RMIDCA) 
NF-N.I-KKI+KMID 
DO 40 I-KMID,NF 
I I--KMID 
DO 39 L-1,M 
ACUM-0. 
DO 38 J"10KK1 

38 ACUM-ACU14MC(J)*Y((II+J-I)*RNL) 
IT-( 1-11*4+L 

39 S IT)-ACUM 
40 CONTINUE 

C 
C RIGHT BOUNDARY 
C 

KMIDPI=KRMID. 
DO 50 I-KMIDPI,KK 
CALL COEGEN(KKI,IC,A) 
I N-RKK 
DU 49 L-S,M 
ACUM=O. 
DO 48 J-1,KKI 

48 ACUM=ACUM+CIJ*YRTIII+J-1I*MEL) 
IT-(I 1+11-11*8.8 

49 S(IT)-ACUM 
50 CONTINUE 

RE TURN 
100 IERROR-1 

RtTURN 
END 
SUBROUTINE COEGEN(N.NPC,v8I 
IMPLICIT REAL*R(A-H,O-ZI 
DIMENSION C(501,00(501.ALF(I50 

C THIS IS A SLIGHTLY MODIFIED VERSION 1N FORTRAN IV OF THE ALGOL * 
C * PROCEDURE PVAU , P. 901 OF SOLUTION OF VANDERMONDE SYSTEMS * 
C * OF EQUATIONS" BY A. WORCK AND V. PEREYRA. MATH. COMP. VOL. 24* 
C * PP. 893-903 (19705, WHERE A COMPLETE DESCRIPTION OF THE METHOD 
C * USED CAN BE FOUND. 
C * **** ** ************************ 


